RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Asunto(s)
Inflamación , Interleucina-1beta , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Humanos , Carcinogénesis , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Dinoprostona/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factores de Necrosis Tumoral/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patologíaRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a dismal prognosis that arises from precursor lesions called pancreatic intraepithelial neoplasias (PanINs). Progression from low- to high-grade PanINs is considered as tumor initiation, and a deeper understanding of this switch is needed. Here, we show that synaptic molecule neuroligin-2 (NLGN2) is expressed by pancreatic exocrine cells and plays a crucial role in the regulation of contact inhibition and epithelial polarity, which characterize the switch from low- to high-grade PanIN. NLGN2 localizes to tight junctions in acinar cells, is diffusely distributed in the cytosol in low-grade PanINs and is lost in high-grade PanINs and in a high percentage of advanced PDACs. Mechanistically, NLGN2 is necessary for the formation of the PALS1/PATJ complex, which in turn induces contact inhibition by reducing YAP function. Our results provide novel insights into NLGN2 functions outside the nervous system and can be used to model PanIN progression.
Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neuroliginas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma in Situ/patología , Transformación Celular NeoplásicaRESUMEN
A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Interleucina-17/genética , Receptores de Interleucina/genética , Adenocarcinoma/patología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Ratones Noqueados , Microambiente Tumoral/genéticaRESUMEN
OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN: Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS: PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION: Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Asunto(s)
Carcinoma Ductal Pancreático , Everolimus , Lípidos , Lisosomas , Inhibidores mTOR , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glutamina/metabolismo , Lípidos/biosíntesis , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Everolimus/uso terapéutico , Inhibidores mTOR/uso terapéutico , Glutaminasa , Neoplasias PancreáticasRESUMEN
BACKGROUND & AIMS: Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown. METHODS: Human PDAC samples and murine KrasG12D-dependent pancreatic cancer models of increasing aggressiveness were used. p130Cas was conditionally ablated in pancreatic cancer models to investigate its role during Kras-induced tumorigenesis. RESULTS: We found that high expression of p130Cas is frequently detected in PDAC and correlates with higher histologic grade and poor prognosis. In a model of Kras-driven PDAC, loss of p130Cas inhibits tumor development and potently extends median survival. Deletion of p130Cas suppresses acinar-derived tumorigenesis and progression by means of repressing PI3K-AKT signaling, even in the presence of a worsening condition like pancreatitis. CONCLUSIONS: Our observations finally demonstrated that p130Cas acts downstream of Kras to boost the PI3K activity required for acinar to ductal metaplasia and subsequent tumor initiation. This demonstrates an unexpected driving role of p130Cas downstream of Kras through PI3K/AKT, thus indicating a rational therapeutic strategy of targeting the PI3K pathway in tumors with high expression of p130Cas.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Proteína Sustrato Asociada a CrK , Neoplasias Pancreáticas , Células Acinares/patología , Adenocarcinoma/patología , Animales , Carcinogénesis , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Proteína Sustrato Asociada a CrK/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Metaplasia/patología , Ratones , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias PancreáticasRESUMEN
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Asunto(s)
Glucólisis/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Transducción de Señal/inmunología , Animales , Humanos , Inmunidad/inmunología , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunologíaRESUMEN
BACKGROUND: Multiple Sclerosis (MS) represents nowadays in Europe the leading cause of non-traumatic disabilities in young adults, with more than 700,000 EU cases. Although huge strides have been made over the years, MS etiology remains partially unknown. Furthermore, the presence of various endogenous and exogenous factors can greatly influence the immune response of different individuals, making it difficult to study and understand the disease. This becomes more evident in a personalized-fashion when medical doctors have to choose the best therapy for patient well-being. In this optics, the use of stochastic models, capable of taking into consideration all the fluctuations due to unknown factors and individual variability, is highly advisable. RESULTS: We propose a new model to study the immune response in relapsing remitting MS (RRMS), the most common form of MS that is characterized by alternate episodes of symptom exacerbation (relapses) with periods of disease stability (remission). In this new model, both the peripheral lymph node/blood vessel and the central nervous system are explicitly represented. The model was created and analysed using Epimod, our recently developed general framework for modeling complex biological systems. Then the effectiveness of our model was shown by modeling the complex immunological mechanisms characterizing RRMS during its course and under the DAC administration. CONCLUSIONS: Simulation results have proven the ability of the model to reproduce in silico the immune T cell balance characterizing RRMS course and the DAC effects. Furthermore, they confirmed the importance of a timely intervention on the disease course.
Asunto(s)
Sistema Inmunológico/fisiología , Modelos Biológicos , Esclerosis Múltiple Recurrente-Remitente/inmunología , Interfaz Usuario-Computador , Algoritmos , Daclizumab/uso terapéutico , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/patología , Procesos EstocásticosRESUMEN
The RNA-binding protein, Epithelial Splicing Regulatory Protein 1 (ESRP1) can promote or suppress tumorigenesis depending on the cell type and disease context. In colorectal cancer, we have previously shown that aberrantly high ESRP1 expression can drive tumor progression. In order to unveil the mechanisms by which ESRP1 can modulate cancer traits, we searched for proteins affected by modulation of Esrp1 in two human colorectal cancer cell lines, HCA24 and COLO320DM, by proteomics analysis. Proteins hosted by endogenous ESRP1 ribonucleoprotein complex in HCA24 cells were also analyzed following RNA-immunoprecipitation. Proteomics data were complemented with bioinformatics approach to exploit publicly available data on protein-protein interaction (PPI). Gene Ontology was analysed to identify a common molecular signature possibly explaining the pro-tumorigenic role of ESRP1. Interestingly, proteins identified herein support a role for ESRP1 in response to external stimulus, regulation of cell cycle and hypoxia. Our data provide further insights into factors affected by and entwined with ESRP1 in colorectal cancer.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Unión Proteica , Proteínas de Unión al ARN/genéticaRESUMEN
OBJECTIVE: Pancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of ßig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer. DESIGN: We performed studies with p48-Cre;KrasG12D, pdx1-Cre;KrasG12D;Ink4a/Arffl/fl, pdx1-Cre;KrasG12D; p53R172H mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-ßig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy. RESULTS: We identified ßig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that ßig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting ßig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting ßig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment. CONCLUSIONS: Our data indicate that targeting stromal extracellular matrix protein ßig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present ßig-h3 as a novel immunological target in pancreatic cancer.
Asunto(s)
Adenocarcinoma/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Proteínas de la Matriz Extracelular/inmunología , Neoplasias Pancreáticas/inmunología , Factor de Crecimiento Transformador beta/inmunología , Microambiente Tumoral/inmunología , Animales , Fibroblastos/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Microscopía de Fuerza Atómica , Comunicación Paracrina/inmunologíaRESUMEN
BACKGROUND: Anthracyclines, such as doxorubicin (DOX), are potent anticancer agents for the treatment of solid tumors and hematologic malignancies. However, their clinical use is hampered by cardiotoxicity. This study sought to investigate the role of phosphoinositide 3-kinase γ (PI3Kγ) in DOX-induced cardiotoxicity and the potential cardioprotective and anticancer effects of PI3Kγ inhibition. METHODS: Mice expressing a kinase-inactive PI3Kγ or receiving PI3Kγ-selective inhibitors were subjected to chronic DOX treatment. Cardiac function was analyzed by echocardiography, and DOX-mediated signaling was assessed in whole hearts or isolated cardiomyocytes. The dual cardioprotective and antitumor action of PI3Kγ inhibition was assessed in mouse mammary tumor models. RESULTS: PI3Kγ kinase-dead mice showed preserved cardiac function after chronic low-dose DOX treatment and were protected against DOX-induced cardiotoxicity. The beneficial effects of PI3Kγ inhibition were causally linked to enhanced autophagic disposal of DOX-damaged mitochondria. Consistently, either pharmacological or genetic blockade of autophagy in vivo abrogated the resistance of PI3Kγ kinase-dead mice to DOX cardiotoxicity. Mechanistically, PI3Kγ was triggered in DOX-treated hearts, downstream of Toll-like receptor 9, by the mitochondrial DNA released by injured organelles and contained in autolysosomes. This autolysosomal PI3Kγ/Akt/mTOR/Ulk1 signaling provided maladaptive feedback inhibition of autophagy. PI3Kγ blockade in models of mammary gland tumors prevented DOX-induced cardiac dysfunction and concomitantly synergized with the antitumor action of DOX by unleashing anticancer immunity. CONCLUSIONS: Blockade of PI3Kγ may provide a dual therapeutic advantage in cancer therapy by simultaneously preventing anthracyclines cardiotoxicity and reducing tumor growth.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Cardiopatías/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Quinoxalinas/farmacología , Tiazolidinedionas/farmacología , Carga Tumoral/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cardiotoxicidad , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Doxorrubicina/toxicidad , Femenino , Genes erbB-2 , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/patología , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismoRESUMEN
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Lisina/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma in Situ/tratamiento farmacológico , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complicaciones de la Diabetes/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Genes ras , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Péptidos/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Factores de Riesgo , Transducción de Señal , Factores de Tiempo , Carga Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
CONTEXT: Von Hippel-Lindau disease (VHLD) is a rare inherited neoplastic syndrome. Among all the VHLD-associated tumors, clear cell renal cell carcinoma (ccRCC) is the major cause of death. OBJECTIVE: The aim of this paper is the discovery of new non-invasive biomarker for the monitoring of VHLD patients. MATERIALS AND METHODS: We compared the urinary proteome of VHLD patients, ccRCC patients and healthy volunteers. RESULTS: Among all differentially expressed proteins, alpha-1-antitrypsin (A1AT) and APOH (beta-2-glycoprotein-1) are strongly over-abundant only in the urine of VHLD patients with a history of ccRCC. DISCUSSION AND CONCLUSION: A1AT and APOH could be promising non-invasive biomarkers.
Asunto(s)
Biomarcadores de Tumor/orina , Carcinoma de Células Renales/orina , Neoplasias Renales/orina , alfa 1-Antitripsina/orina , beta 2 Glicoproteína I/orina , Enfermedad de von Hippel-Lindau/orina , Adulto , Anciano , Western Blotting , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/diagnóstico , Electroforesis en Gel Bidimensional , Femenino , Humanos , Neoplasias Renales/complicaciones , Masculino , Persona de Mediana Edad , Proteoma/análisis , Enfermedad de von Hippel-Lindau/complicacionesRESUMEN
The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFß (transforming growth factor ß) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/inmunología , Linfocitos T Colaboradores-Inductores/fisiología , Linfocitos T Reguladores/fisiología , Animales , Modelos Animales de Enfermedad , Interleucina-17/deficiencia , Interleucinas/metabolismo , Hígado/inmunología , Masculino , Ratones Endogámicos C57BL , Interleucina-22RESUMEN
PDAC (pancreatic ductal adenocarcinoma) is the fifth leading cause of cancer-related death. The causes of this cancer remain unknown, but increasing evidence indicates a key role of the host immune response and cytokines in human carcinogenesis. Intra-tumoral IL (interleukin)-22 levels have been shown to be elevated in PDAC patients. However, little is known regarding the expression and clinical relevance of Th22 cells in human PDAC and, furthermore, which TILs (tumour-infiltrating lymphocytes) are the main producers of IL-22 is unknown. In the present study, we characterized the functional proprieties of the different subsets of IL-22-producing TILs and analysed their relationship with the TNM staging system and patient survival. We have demonstrated for the first time that, in PDAC patients, the T-cells co-producing IFN-γ (interferon γ) and exerting perforin-mediated cytotoxicity are the major intra-tumoral source of IL-22. In addition, isolated Th22 cells were able to induce apoptosis, which was antagonized by IL-22. Finally, we observed that the IL-22-producing T-cells were significantly increased in tumour tissue and that this increase was positively correlated with TNM staging of PDAC and poorer patient survival. These novel findings support the dual role of the anti-tumour immune system and that IL-22-producing cells may participate in PDAC pathogenesis. Therefore monitoring Th22 levels could be a good diagnostic parameter, and blocking IL-22 signalling may represent a viable method for anti-PDAC therapies.
Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Interferón gamma/metabolismo , Interleucinas/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Pancreáticas/metabolismo , Comunicación Paracrina , Linfocitos T Colaboradores-Inductores/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Femenino , Granzimas/metabolismo , Humanos , Interferón gamma/inmunología , Interleucinas/inmunología , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Perforina/metabolismo , Fenotipo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología , Interleucina-22RESUMEN
Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca(2+) availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca(2+), affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca(2+) availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15kDa, in addition to the well-known fragments of 35 and 25kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies.
Asunto(s)
Apoptosis/genética , Calcio/metabolismo , Caspasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , RatonesRESUMEN
BACKGROUND & AIMS: Ischemia-reperfusion (IR) of liver results in hepatocytes (HP) and sinusoidal endothelial cells (LSEC) irreversible damage. Ischemic preconditioning protects IR damage upon adenosine A2a receptor (A2aR) stimulation. Understanding the phenotypic changes that underlie hepatocellular damage and protection is critical to optimize strategies against IR. METHODS: The proteome of HP and LSEC, isolated from sham or IR exposed mice, receiving or not the A2aR agonist CGS21680 (0.5mg/kg b.w.), was analyzed by 2-D DIGE/MALDI-TOF. RESULTS: We identified 64 proteins involved in cytoprotection, regeneration, energy metabolism and response to oxidative stress; among them, 34 were associated with IR injury and A2aR protection. The main pathways, downregulated by IR and upregulated by CGS21680 in HP and LSEC, were related to carbohydrate, protein and lipid supply and metabolism. In LSEC, IR reduced stress response enzymes that were instead upregulated by CGS21680 treatment. Functional validation experiments confirmed the metabolic involvement and showed that inhibition of pyruvate kinase, 3-chetoacylCoA thiolase, and arginase reduced the protection by CGS21680 of in vitro hypoxia-reoxygenation injury, whereas their metabolic products induced liver cell protection. Moreover, LSEC, but not HP, were sensitive to H2O2-induced oxidative damage and CGS21680 protected against this effect. CONCLUSIONS: IR and A2aR stimulation produces pathological and protected liver cell phenotypes, respectively characterized by down- and upregulation of proteins involved in the response to O2 and nutrients deprivation during ischemia, oxidative stress, and reactivation of aerobic energy synthesis at reperfusion. This provides novel insights into IR hepatocellular damage and protection, and suggests additional therapeutic options.
Asunto(s)
Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/lesiones , Receptor de Adenosina A2A/metabolismo , Daño por Reperfusión/etiología , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Antioxidantes/farmacología , Citoprotección/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenetilaminas/farmacología , Proteoma/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & controlRESUMEN
Hemopexin (Hx) is an acute-phase protein synthesized by hepatocytes in response to the proinflammatory cytokines IL-6, IL-1ß, and TNF-α. Hx is the plasma protein with the highest binding affinity to heme and controls heme-iron availability in tissues and also in T lymphocytes, where it modulates their responsiveness to IFN-γ. Recent data have questioned regarding an anti-inflammatory role of Hx, a role that may be both heme-binding dependent and independent. The aim of this study was to investigate the role of Hx in the development of a T cell-mediated inflammatory autoimmune response. During experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis, Hx content in serum increased and remained high. When EAE was induced in Hx knockout (Hx(-/-)) mice, they developed a clinically earlier and exacerbated EAE compared with wild-type mice, associated to a higher amount of CD4(+)-infiltrating T cells. The severe EAE developed by Hx(-/-) mice could be ascribed to an enhanced expansion of Th17 cells accounting for both a higher disposition of naive T cells to differentiate toward the Th17 lineage and a higher production of Th17 differentiating cytokines IL-6 and IL-23 by APCs. When purified human Hx was injected in Hx(-/-) mice before EAE induction, Th17 expansion, as well as disease severity, were comparable with those of wild-type mice. Taken together, these data indicate that Hx has a negative regulatory role in Th17-mediated inflammation and prospect its pharmacological use to limit the expansion of this cell subset in inflammatory and autoimmune disease.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Hemopexina/metabolismo , Hepatocitos/inmunología , Esclerosis Múltiple/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Citocinas/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Hemopexina/genética , Hemopexina/inmunología , Humanos , Inmunidad Celular/genética , Terapia de Inmunosupresión , Mediadores de Inflamación/inmunología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Esclerosis Múltiple/genéticaRESUMEN
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA) is an aggressive tumor, and patients typically present with late-stage disease; rates of 5-year survival after pancreaticoduodenectomy are low. Antibodies against α-enolase (ENO1), a glycolytic enzyme, are detected in more than 60% of patients with PDA, and ENO1-specific T cells inhibit the growth of human pancreatic xenograft tumors in mice. We investigated whether an ENO1 DNA vaccine elicits antitumor immune responses and prolongs survival of mice that spontaneously develop autochthonous, lethal pancreatic carcinomas. METHODS: We injected and electroporated a plasmid encoding ENO1 (or a control plasmid) into Kras(G12D)/Cre (KC) mice and Kras(G12D)/Trp53(R172H)/Cre (KPC) mice at 4 weeks of age (when pancreatic intraepithelial lesions are histologically evident). Antitumor humoral and cellular responses were analyzed by histology, immunohistochemistry, enzyme-linked immunosorbent assays, flow cytometry, and enzyme-linked immunosorbent spot and cytotoxicity assays. Survival was analyzed by Kaplan-Meier analysis. RESULTS: The ENO1 vaccine induced antibody and a cellular response and increased survival times by a median of 138 days in KC mice and 42 days in KPC mice compared with mice given the control vector. On histologic analysis, the vaccine appeared to slow tumor progression. The vaccinated mice had increased serum levels of anti-ENO1 immunoglobulin G, which bound the surface of carcinoma cells and induced complement-dependent cytotoxicity. ENO1 vaccination reduced numbers of myeloid-derived suppressor cells and T-regulatory cells and increased T-helper 1 and 17 responses. CONCLUSIONS: In a genetic model of pancreatic carcinoma, vaccination with ENO1 DNA elicits humoral and cellular immune responses against tumors, delays tumor progression, and significantly extends survival. This vaccination strategy might be developed as a neoadjuvant therapy for patients with PDA.
Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunidad Celular/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfopiruvato Hidratasa/inmunología , Vacunación/métodos , Vacunas de ADN/farmacología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Ratones , Ratones Mutantes , Neoplasias Experimentales/genética , Neoplasias Experimentales/mortalidad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Tasa de SupervivenciaRESUMEN
DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.