Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 91(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28148802

RESUMEN

The demonstrated clinical efficacy of a recombinant vesicular stomatitis virus (rVSV) vaccine vector has stimulated the investigation of additional serologically distinct Vesiculovirus vectors as therapeutic and/or prophylactic vaccine vectors to combat emerging viral diseases. Among these viral threats are the encephalitic alphaviruses Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV), which have demonstrated potential for natural disease outbreaks, yet no licensed vaccines are available in the event of an epidemic. Here we report the rescue of recombinant Isfahan virus (rISFV) from genomic cDNA as a potential new vaccine vector platform. The rISFV genome was modified to attenuate virulence and express the VEEV and EEEV E2/E1 surface glycoproteins as vaccine antigens. A single dose of the rISFV vaccine vectors elicited neutralizing antibody responses and protected mice from lethal VEEV and EEEV challenges at 1 month postvaccination as well as lethal VEEV challenge at 8 months postvaccination. A mixture of rISFV vectors expressing the VEEV and EEEV E2/E1 glycoproteins also provided durable, single-dose protection from lethal VEEV and EEEV challenges, demonstrating the potential for a multivalent vaccine formulation. These findings were paralleled in studies with an attenuated form of rVSV expressing the VEEV E2/E1 glycoproteins. Both the rVSV and rISFV vectors were attenuated by using an approach that has demonstrated safety in human trials of an rVSV/HIV-1 vaccine. Vaccines based on either of these vaccine vector platforms may present a safe and effective approach to prevent alphavirus-induced disease in humans.IMPORTANCE This work introduces rISFV as a novel vaccine vector platform that is serologically distinct and phylogenetically distant from VSV. The rISFV vector has been attenuated by an approach used for an rVSV vector that has demonstrated safety in clinical studies. The vaccine potential of the rISFV vector was investigated in a well-established alphavirus disease model. The findings indicate the feasibility of producing a safe, efficacious, multivalent vaccine against the encephalitic alphaviruses VEEV and EEEV, both of which can cause fatal disease. This work also demonstrates the efficacy of an attenuated rVSV vector that has already demonstrated safety and immunogenicity in multiple HIV-1 phase I clinical studies. The absence of serological cross-reactivity between rVSV and rISFV and their phylogenetic divergence within the Vesiculovirus genus indicate potential for two stand-alone vaccine vector platforms that could be used to target multiple bacterial and/or viral agents in successive immunization campaigns or as heterologous prime-boost agents.


Asunto(s)
Portadores de Fármacos , Virus de la Encefalitis Equina del Este/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina/prevención & control , Vesiculovirus/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina del Este/genética , Virus de la Encefalitis Equina Venezolana/genética , Glicoproteínas/genética , Glicoproteínas/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Análisis de Supervivencia , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/genética
2.
Vaccines (Basel) ; 12(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39203984

RESUMEN

There are currently no prophylactic vaccines licensed to protect against Lassa fever caused by Lassa virus (LASV) infection. The Emergent BioSolutions (EBS) vaccine candidate, EBS-LASV, is being developed for the prevention of Lassa fever. EBS-LASV is a live-attenuated recombinant Vesicular Stomatitis Virus (rVSV)-vectored vaccine encoding the surface glycoprotein complex (GPC) from LASV and has two attenuating vector modifications: a gene shuffle of the VSV N gene and a deletion of the VSV G gene. Preclinical studies were performed to evaluate EBS-LASV's neurovirulence potential following intracranial (IC) injection and to determine the biodistribution and vector replication following intramuscular (IM) inoculation in mice. In addition, the potential EBS-LASV toxicity was assessed using repeated-dose IM EBS-LASV administration to rabbits. All mice receiving the IC injection of EBS-LASV survived, while mice administered the unattenuated control vector did not. The vaccine was only detected in the muscle at the injection site, draining lymph nodes, and the spleen over the first week following IM EBS-LASV injection in mice, with no detectable plasma viremia. No toxicity was observed in rabbits receiving a three-dose regimen of EBS-LASV. These studies demonstrate that EBS-LASV is safe when administered to animals and supported a first-in-human dose-escalation, safety, and immunogenicity clinical study.

3.
J Clin Invest ; 130(1): 539-551, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31820871

RESUMEN

Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of VesiculoVax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and that also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the 3 corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all 4 glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the level of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vectores Genéticos , Inmunoglobulina G/inmunología , Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Vesiculovirus , Vacunas Virales/inmunología , Animales , Humanos , Fiebre de Lassa/genética , Fiebre de Lassa/inmunología , Virus Lassa/genética , Macaca fascicularis , Vacunas Virales/genética
4.
J Virol Methods ; 135(1): 91-101, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16569439

RESUMEN

Recovery of recombinant, negative-strand, nonsegmented RNA viruses from a genomic cDNA clone requires a rescue system that promotes de novo assembly of a functional ribonucleoprotein (RNP) complex in the cell cytoplasm. This is accomplished typically by cotransfecting permissive cells with multiple plasmids that encode the positive-sense genomic RNA, the nucleocapsid protein (N or NP), and the two subunits of the viral RNA-dependent RNA polymerase (L and P). The transfected plasmids are transcribed in the cell cytoplasm by phage T7 RNA polymerase (T7 RNAP), which usually is supplied by infection with a recombinant vaccinia virus or through use of a stable cell line that expresses the polymerase. Although both methods of providing T7 RNAP are effective neither is ideal for viral vaccine development for a number of reasons. Therefore, it was necessary to modify existing technology to make it possible to routinely rescue a variety of recombinant viruses when T7 RNAP was provided by a cotransfected expression plasmid. Development of a broadly applicable procedure required optimization of the helper-virus-free methodology, which resulted in several modifications that improved rescue efficiency such as inclusion of plasmids encoding viral glycoproteins and matrix protein, heat shock treatment, and use of electroporation. The combined effect of these enhancements produced several important benefits including: (1) a helper-virus-free methodology capable of rescuing a diverse variety of paramyxoviruses and recombinant vesicular stomatitis virus (rVSV); (2) methodology that functioned effectively when using Vero cells, a suitable substrate for vaccine production; and (3) a method that enabled rescue of highly attenuated recombinant viruses, which had proven refractory to rescue using published procedures.


Asunto(s)
Paramyxovirinae/aislamiento & purificación , Vacunas Atenuadas , Virus de la Estomatitis Vesicular Indiana/aislamiento & purificación , Vacunas Virales/genética , Animales , Chlorocebus aethiops , ADN Recombinante , ADN Viral , ARN Polimerasas Dirigidas por ADN/genética , Virus Helper/genética , Mutación , Paramyxovirinae/genética , Plásmidos/genética , ARN Viral/metabolismo , Transfección , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas Virales/genética , Replicación Viral/genética , Replicación Viral/fisiología
5.
Virus Res ; 83(1-2): 131-47, 2002 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-11864746

RESUMEN

A canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock. Applying these findings to rescue of recombinant CDV (rCDV) resulted in efficient recovery of virus after transfected HEp2 or A549 cells were co-cultured with Vero cell monolayers. Nucleotide sequence determination and analysis of restriction site polymorphisms confirmed that rescued virus was rCDV. A rCDV strain also was engineered that contained the luciferase gene inserted between the P and M genes; this virus directed high levels of luciferase expression in infected cells.


Asunto(s)
Virus del Moquillo Canino/genética , Expresión Génica , Vectores Genéticos/genética , Animales , Secuencia de Bases , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Cricetinae , ADN Viral , ARN Polimerasas Dirigidas por ADN/genética , Virus del Moquillo Canino/aislamiento & purificación , Perros , Genes Reporteros , Humanos , Luciferasas/genética , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/genética , Recombinación Genética , Replicón , Células Tumorales Cultivadas , Células Vero
6.
Immunol Lett ; 150(1-2): 134-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23261719

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in infants, the elderly, and other high-risk individuals. Despite years of research in this field, there is no effective licensed vaccine to prevent RSV infection. We have generated candidate RSV vaccines using a recombinant vesicular stomatitis virus (rVSV) replicon in which the attachment and fusion domains of the VSV glycoprotein (G) have been deleted (rVSV-Gstem), rendering the virus propagation-defective except in the presence of complementing VSV G provided in trans. A form of this vector encoding the RSV fusion protein (F) gene expressed high levels of F in vitro and elicited durable neutralizing antibody responses as well as complete protection against RSV challenge in vivo. Mice vaccinated with rVSV-Gstem-RSV-F replicons also developed robust cellular responses characterized by both primary and memory Th1-biased CD8+ and CD4+ T cells. Furthermore, a single high dose of the Gstem-RSV-F replicon was effective against challenge with both RSV A and B subgroup viruses. Finally, addition of an RSV glycoprotein (G)-expressing Gstem vector significantly improved the incomplete protection achieved with a single low dose of Gstem-RSV-F vector alone.


Asunto(s)
Vectores Genéticos/genética , Vectores Genéticos/inmunología , Inmunidad Celular , Inmunidad Humoral , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/inmunología , Vesiculovirus/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Orden Génico , Vectores Genéticos/administración & dosificación , Humanos , Inmunización , Memoria Inmunológica , Ratones , Infecciones por Virus Sincitial Respiratorio/prevención & control , Células TH1/inmunología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA