Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102151, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35718063

RESUMEN

cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Bacteriana , Mycobacterium smegmatis , Hidrolasas Diéster Fosfóricas , Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , AMP Cíclico , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
2.
BMC Vet Res ; 19(1): 4, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624444

RESUMEN

Post-weaning diarrhea in piglets is a major problem, resulting in a significant loss in pig production. This study aimed to investigate the effects of piperine, an alkaloid abundantly found in black peppers, on biological activities related to the pathogenesis of post-weaning diarrhea using a porcine duodenal enteroid model, a newly established intestinal stem cell-derived in vitro model recapitulating physiology of porcine small intestinal epithelia. Porcine duodenal enteroid models were treated with disease-relevant pathological inducers with or without piperine (8 µg/mL and/or 20 µg/mL) before measurements of oxidative stress, mRNA, and protein expression of proinflammatory cytokines, nuclear factor-kappa B (NF-κB) nuclear translocation, barrier leakage, and fluid secretion. We found that piperine (20 µg/mL) inhibited H2O2-induced oxidative stress, TNF-α-induced mRNA, and protein expression of proinflammatory cytokines without affecting NF-κB nuclear translocation, and prevented TNF-α-induced barrier leakage in porcine duodenal enteroid monolayers. Importantly, piperine inhibited fluid secretion induced by both forskolin and heat-stable toxins (STa) in a three-dimensional model of porcine duodenal enteroids. Collectively, piperine possesses both anti-inflammatory and anti-secretory effects in porcine enteroid models. Further research and development of piperine may provide novel interventions for the treatment of post-weaning porcine diarrhea.


Asunto(s)
Alcaloides , FN-kappa B , Porcinos , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa , Destete , Peróxido de Hidrógeno , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Alcaloides/farmacología , Citocinas , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA