Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Microbiol ; 21(4): e12989, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511515

RESUMEN

Histone deacetylase 11 (HDAC11) is most recently discovered deacetylase. Here, we demonstrate that human HDAC11 exhibits anti-influenza A virus (IAV) properties. We found that knockdown of HDAC11 expression augments IAV growth kinetics in human lung epithelial cells A549 by up to 1 log. One of the ways HDAC11 exerts its anti-IAV function is by being a part of IAV-induced host antiviral response. We found that the kinetics of both IAV- and interferon-induced innate antiviral response is significantly delayed in HDAC11-depleted cells. Further, in the absence of HDAC11 expression, there was a significant decrease in the expression of interferon-stimulated genes-IFITM3, ISG15, and viperin-previously implicated in anti-IAV function. One of the ways IAV antagonises HDAC11 is by downregulating its expression in host cells. We found that there was up to 93% reduction in HDAC11 transcript levels in A549 cells in response to IAV infection. HDAC11 is the smallest HDAC with majority of its polypeptide assigned to catalytic domain. Evolutionarily, it seems to be the least evolved and most closely related to common ancestral HDAC gene(s). Furthermore, HDAC11 has also been described as a deacylase. Therefore, our findings present exciting prospects for further investigations into significance of HDAC11 in virus infections.


Asunto(s)
Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Inmunidad Innata/fisiología , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Gripe Humana/virología , Células A549 , Histona Desacetilasas/genética , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/genética , Gripe Humana/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/genética , Proteínas/metabolismo , Replicación Viral/genética , Replicación Viral/fisiología
2.
Infect Drug Resist ; 10: 121-134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458567

RESUMEN

Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes of drugs by mutating these viral components. The adamantane-resistant IAV has established itself in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, circulating globally are resistant to adamantanes. Consequently, adamantanes have become practically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to be available control measures to manage current and emerging drug-resistant IAV. Finally, this review outlines the research directions that should be undertaken to manage the circulation of IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA