Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 52(3): 325-39, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24095281

RESUMEN

Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Coenzima A/metabolismo , Oocitos/metabolismo , Xenopus laevis/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Caspasa 2/metabolismo , Supervivencia Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Oocitos/crecimiento & desarrollo , Fosforilación/genética , Unión Proteica , Transducción de Señal , Activación Transcripcional , Xenopus laevis/crecimiento & desarrollo
2.
Mol Cell ; 47(5): 667-8, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980457

RESUMEN

In this issue of Molecular Cell, an activator of the PIDDosome (a complex comprising of PIDD, RAIDD, and caspase-2) is described in experiments detailing endogenous PIDDosome assembly and caspase-2 function after DNA damage in the presence of Chk1 suppression (Ando et al., 2012).

3.
Semin Cell Dev Biol ; 23(4): 412-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22507445

RESUMEN

Abnormal metabolism and the evasion of apoptosis are both considered hallmarks of cancer. A remarkable biochemical model system, the Xenopus laevis oocyte, exhibits altered metabolism coupled to its apoptotic machinery in a similar fashion to cancer cells. This review considers the theory that these two hallmarks of cancer are coupled in tumor cells and provides strong proof that the Xenopus laevis oocyte system is an appropriate model in which to dissect the biochemical events underlying the connection between the two hallmarks. By further elucidating the mechanisms through which metabolism suppresses apoptotic machinery, we may gain a better understanding about how normal cells transform into cancer cells.


Asunto(s)
Apoptosis , Metabolismo Energético , Neoplasias/metabolismo , Oocitos/metabolismo , Xenopus laevis , Animales , Glutamina/metabolismo , Humanos , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Neoplasias/patología , Oocitos/enzimología
4.
J Biol Chem ; 288(13): 8838-48, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23400775

RESUMEN

The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Xenopus laevis/metabolismo , Animales , Apoptosis , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular , Proliferación Celular , Espectrometría de Masas/métodos , Oocitos/metabolismo , Oxígeno/metabolismo , Péptidos/química , Fosforilación , Proteína Fosfatasa 1/metabolismo , Proteínas Recombinantes/metabolismo , Sefarosa/química , Serina/química , Xenopus/metabolismo
5.
EMBO J ; 29(18): 3196-207, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20700104

RESUMEN

Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome-wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc-mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII-mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death-inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non-phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Supervivencia Celular , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Activación Enzimática , Inmunoprecipitación , Malatos/metabolismo , NADP/metabolismo , Neuronas/citología , ARN Interferente Pequeño/farmacología
6.
EMBO J ; 28(20): 3216-27, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19730412

RESUMEN

The apoptotic initiator caspase-2 has been implicated in oocyte death, in DNA damage- and heat shock-induced death, and in mitotic catastrophe. We show here that the mitosis-promoting kinase, cdk1-cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase-2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase-2 interdomain, prevents caspase-2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase-2 detected during interphase was lost in mitosis. Expression of S340A non-phosphorylatable caspase-2 abrogated mitotic suppression of caspase-2 and apoptosis in various settings, including oocytes induced to undergo cdk1-dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase-2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase-2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase-2 and suggest that under conditions of mitotic arrest, cdk1-cyclin B1 activity must be overcome for apoptosis to occur.


Asunto(s)
Apoptosis/fisiología , Caspasa 2/metabolismo , Mitosis/fisiología , Animales , Apoptosis/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Caspasa 2/genética , Línea Celular , Línea Celular Tumoral , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Humanos , Lentivirus , Mitosis/efectos de los fármacos , Mitosis/genética , Nocodazol/farmacología , Oocitos , Fosforilación , ARN Interferente Pequeño , Serina/genética , Serina/metabolismo , Serina/fisiología , Xenopus
7.
J Cell Biol ; 169(1): 61-71, 2005 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-15824132

RESUMEN

Degradation of specific protein substrates by the anaphase-promoting complex/cyclosome (APC) is critical for mitotic exit. We have identified the protein Xenopus nuclear factor 7 (Xnf7) as a novel APC inhibitor able to regulate the timing of exit from mitosis. Immunodepletion of Xnf7 from Xenopus laevis egg extracts accelerated the degradation of APC substrates cyclin B1, cyclin B2, and securin upon release from cytostatic factor arrest, whereas excess Xnf7 inhibited APC activity. Interestingly, Xnf7 exhibited intrinsic ubiquitin ligase activity, and this activity was required for APC inhibition. Unlike other reported APC inhibitors, Xnf7 did not associate with Cdc20, but rather bound directly to core subunits of the APC. Furthermore, Xnf7 was required for spindle assembly checkpoint function in egg extracts. These data suggest that Xnf7 is an APC inhibitor able to link spindle status to the APC through direct association with APC core components.


Asunto(s)
Ciclina B/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclina B/genética , Ciclina B1 , Proteínas de Unión al ADN , Proteínas del Huevo , Femenino , Mitosis/genética , Proteínas Nucleares/genética , Oocitos/metabolismo , Fosfoproteínas/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Huso Acromático/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética
9.
Protein Expr Purif ; 62(2): 223-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18765283

RESUMEN

We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membrane proteins from crude membrane preparations or cell lines. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. When these ConA magnetic beads were used to enrich plasma membranes from a crude membrane preparation, this procedure resulted in 3.7-fold enrichment of plasma membrane marker 5'-nucleotidase activity with 70% recovery of the activity in the crude membrane fraction of rat liver. In agreement with the results of 5'-nucleotidase activity, immunoblotting with antibodies specific for a rat liver plasma membrane protein, CEACAM1, indicated that CEACAM1 was enriched about threefold relative to that of the original membranes. In similar experiments, this method produced 13-fold enrichment of 5'-nucleotidase activity with 45% recovery of the activity from a total cell lysate of PC-3 cells and 7.1-fold enrichment of 5'-nucleotidase activity with 33% recovery of the activity from a total cell lysate of HeLa cells. These results suggest that this one-step purification method can be used to isolate total plasma membrane proteins from tissue or cells for the identification of membrane biomarkers.


Asunto(s)
Bioquímica/métodos , Membrana Celular/metabolismo , Concanavalina A/metabolismo , Magnetismo , Proteínas de la Membrana/aislamiento & purificación , Microesferas , Animales , Línea Celular Tumoral , Humanos , Extractos Hepáticos/metabolismo , Proteínas de la Membrana/metabolismo , Ratas , Estreptavidina/metabolismo
10.
Cancer Res ; 78(10): 2490-2502, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29535221

RESUMEN

Although emerging evidence suggests a potential role of calcium/calmodulin-dependent kinase II (CaMKII) in prostate cancer, its role in prostate cancer tumorigenesis is largely unknown. Here, we examine whether the acetyl CoA-CaMKII pathway, first described in frog oocytes, promotes prostate cancer tumorigenesis. In human prostate cancer specimens, metastatic prostate cancer expressed higher levels of active CaMKII compared with localized prostate cancer. Correspondingly, basal CaMKII activity was significantly higher in the more tumorigenic PC3 and PC3-mm2 cells relative to the less tumorigenic LNCaP and C4-2B4 cells. Deletion of CaMKII by CRISPR/Cas9 in PC3-mm2 cells abrogated cell survival under low-serum conditions, anchorage-independent growth and cell migration; overexpression of constitutively active CaMKII in C4-2B4 cells promoted these phenotypes. In an animal model of prostate cancer metastasis, genetic ablation of CaMKII reduced PC3-mm2 cell metastasis from the prostate to the lymph nodes. Knockdown of the acetyl-CoA transporter carnitine acetyltransferase abolished CaMKII activation, providing evidence that acetyl-CoA generated from organelles is a major activator of CaMKII. Genetic deletion of the ß-oxidation rate-limiting enzyme ACOX family proteins decreased CaMKII activation, whereas overexpression of ACOXI increased CaMKII activation. Overall, our studies identify active CaMKII as a novel connection between organelle ß-oxidation and acetyl-CoA transport with cell survival, migration, and prostate cancer metastasis.Significance: This study identifies a cell metabolic pathway that promotes prostate cancer metastasis and suggests prostate cancer may be susceptible to ß-oxidation inhibitors. Cancer Res; 78(10); 2490-502. ©2018 AACR.


Asunto(s)
Acetilcoenzima A/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Carcinogénesis/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Neoplasias de la Próstata/patología , Acil-CoA Oxidasa/genética , Animales , Sistemas CRISPR-Cas/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Carnitina O-Acetiltransferasa/genética , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Humanos , Metástasis Linfática/genética , Metástasis Linfática/patología , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Oxidación-Reducción , Oxidorreductasas/genética , Células PC-3
11.
Cancer Biol Ther ; 4(4): 459-67, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15846091

RESUMEN

Arsenic trioxide is a potent chemotherapeutic agent by virtue of its ability to selectively trigger apoptosis in tumor cells. Previous studies have demonstrated that arsenicals cause direct damage to mitochondria, but it is not clear that these effects initiate apoptosis. Here we used Bak-/- mouse liver mitochondria and virally immortalized Bax-/- Bak-/- mouse embryonic fibroblasts (MEFs) to investigate whether or not multidomain proapoptotic BCL-2 family proteins were required for arsenic-induced mitochondrial damage and cell death. At clinically achievable concentrations, arsenic stimulated cytochrome c release and apoptosis via a Bax/Bak-dependent mechanism. At higher concentrations (125 microM-1 mM), cells died via a Bax/Bak-independent mechanism mediated by oxidative stress that resulted in necrosis. Consistent with previous reports, arsenic directly inhibited complex I of the mitochondrial electron transport chain, which resulted in mitochondrial permeability transition (MPT), accompanying generation of reactive oxygen species (ROS), and thiol oxidation. However, these effects only occurred at concentrations of arsenic trioxide of 50 microM and higher, and the oxidative stress associated with these effects blocked caspase activation. Our data demonstrate for the first time that the cytochrome c release which initiates apoptosis in cells exposed to this classic mitochondrial poison occurs indirectly via the activation of Bax/Bak rather than via direct mitochondrial damage. Furthermore, the results implicate reactive oxygen species in a concentration-dependent mechanistic switch between apoptosis and necrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Grupo Citocromo c/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Óxidos/toxicidad , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Trióxido de Arsénico , Arsenicales , Caspasa 3 , Caspasas/metabolismo , Línea Celular Transformada , Transformación Celular Neoplásica , Células Cultivadas , Grupo Citocromo c/análisis , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Fibroblastos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Necrosis/inducido químicamente , Necrosis/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/análisis , Superóxidos/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
12.
Toxicol Appl Pharmacol ; 207(2 Suppl): 110-6, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15979664

RESUMEN

Arsenic trioxide, As(III), is a known environmental toxicant, co-carcinogen, and potent chemotherapeutic agent. In model experiments with isolated rat liver mitochondria, As(III) stimulated a dose-dependent, cyclosporin A-sensitive release of cytochrome c via induction of mitochondrial permeability transition and subsequent swelling of mitochondria. Mitochondrial GSH does not seem to be a target for As(III) which, however, appears to cause oxidative modification of thiol groups of pore forming proteins, notably adenine nucleotide translocase. In mouse embryonic fibroblasts, 10 microM As(III) stimulated cytochrome c release and apoptosis via a Bax/Bak-dependent mechanism. At high concentrations (125 microM and higher), cells died by Bax/Bak-independent necrosis; at this concentration range As(III) targets mitochondria directly, particularly complex I of the mitochondrial respiratory chain. Since pyruvate, a substrate of complex I, is a predominant mitochondrial substrate in the cell, inhibition of complex I will cause mitochondrial instability and a decrease of Delta psi that facilitates permeability transition and necrotic cell death.


Asunto(s)
Arsénico/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citocromos c/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Masculino , Ratones , Mitocondrias Hepáticas/enzimología , Ratas , Ratas Sprague-Dawley , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/fisiología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiología
13.
FEBS Lett ; 545(2-3): 110-4, 2003 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-12804759

RESUMEN

Previous studies have demonstrated that Fas-triggered activation of effector caspases and subsequent nuclear apoptosis either is mitochondria-independent (type I cells) or relies on mitochondrial amplification of the initial stimulus (type II cells). We show herein that Bcl-2 overexpression in a prototypic type I cell line (SKW6.4) promotes mitochondrial generation of ATP and blocks Fas-triggered plasma membrane externalization of phosphatidylserine (PS). Moreover, overexpression of Bcl-2 attenuates macrophage engulfment of Fas-triggered cells. Fas-mediated DNA fragmentation, on the other hand, remains unaffected in SKW6.4-bcl-2 cells. These studies thus demonstrate that PS externalization and clearance of cell corpses are mitochondria-dependent events, and show that these events can be dissociated from other features of the apoptotic program, in Fas type I cells.


Asunto(s)
Mitocondrias/metabolismo , Monocitos/metabolismo , Fosfatidilserinas/metabolismo , Receptor fas/metabolismo , Adenosina Trifosfato/biosíntesis , Anticuerpos Monoclonales/metabolismo , Apoptosis , Caspasas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Fragmentación del ADN , Humanos , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Monocitos/citología , Fagocitosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Tumorales Cultivadas
14.
Methods Mol Biol ; 282: 117-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15105560

RESUMEN

The role of Ca2+ changes in the commitment to apoptosis has been appreciated for more than two decades. However, early work focused on increases in cytosolic Ca2+ levels that may not be associated with most examples of programmed cell death. Rather, recent studies indicate that release of Ca2+ from the endoplasmic reticulum (ER) and subsequent mitochondrial Ca2+ uptake plays a more important role by regulating release of cytochrome c from mitochondria. These apoptosis-associated Ca2+ fluxes are regulated by members of the BCL-2 family of proteins and may therefore be critical targets of their evolutionarily conserved actions. Therefore, the availability of reliable techniques for measuring organelle-associated Ca2+ fluxes is critical to ongoing research in the field, yet these techniques present unique challenges not associated with the more routine measurements of cytosolic Ca2+ levels. In this chapter, we provide detailed methods for measuring cytosolic, ER, and mitochondrial Ca2+ levels in whole using commercially available fluorescent dyes, identifying key potential pitfalls and alternative strategies.


Asunto(s)
Apoptosis/fisiología , Calcio/metabolismo , Aequorina/metabolismo , Animales , Calcio/química , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tapsigargina/metabolismo
15.
Methods Mol Biol ; 1133: 119-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24567099

RESUMEN

The study of apoptosis and caspases has advanced greatly over recent decades. Studies conducted in the Xenopus laevis egg extract and oocyte model system have significantly contributed to these advances. Twenty years ago, Newmeyer and colleagues first showed that the X. laevis egg extract, when incubated at room temperature, reconstituted the key molecular events of cellular apoptosis including cytochrome c release, nuclear condensation, internucleosomal fragmentation, and caspase activation. The biochemical tractability of the egg extract system allows for robust study of apoptotic events and caspase activation. Its nature as a cell-free extract system allows substrates to be very simply added by pipette, and their effects on apoptosis and caspase activation and their placement in the apoptotic signaling pathway (e.g., pre- or post-mitochondrial) are subsequently very simply studied using the techniques described in this chapter. Also described in this chapter are assays that allow the study of caspase activation in intact oocytes, another valuable tool available when using the X. laevis model organism. Overall, the X. laevis egg extract/oocyte model is a robust, efficient, and biochemically tractable system that is ideal for the study of apoptosis and caspase activation.


Asunto(s)
Apoptosis/genética , Caspasas/aislamiento & purificación , Biología Molecular/métodos , Animales , Caspasas/genética , Sistema Libre de Células/enzimología , Oocitos/enzimología , Xenopus laevis
16.
Dev Cell ; 16(6): 856-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19531356

RESUMEN

Xenopus oocyte death is partly controlled by the apoptotic initiator caspase-2 (C2). We reported previously that oocyte nutrient depletion activates C2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit C2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that C2 phosphorylated at S135 binds 14-3-3zeta, thus preventing C2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1 (PP1), which directly binds C2. Although C2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3zeta from C2 is controlled by metabolism and allows for C2 dephosphorylation. Accordingly, a C2 mutant unable to bind 14-3-3zeta is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine C2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.


Asunto(s)
Proteínas 14-3-3/metabolismo , Apoptosis , Caspasa 2/metabolismo , Oocitos/citología , Oocitos/enzimología , Proteína Fosfatasa 1/metabolismo , Animales , Activación Enzimática , Femenino , Ratones , Fosforilación , Unión Proteica , Xenopus
17.
Mol Biol Cell ; 19(8): 3536-43, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550795

RESUMEN

The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.


Asunto(s)
Ciclina B/fisiología , Proteínas F-Box/fisiología , Regulación de la Expresión Génica , Meiosis , Proteínas Proto-Oncogénicas c-mos/fisiología , Animales , Proteína Quinasa CDC2 , Movimiento Celular , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes , Endocitosis , Células HL-60 , Humanos , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo
18.
Genes Dev ; 21(18): 2288-99, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17761813

RESUMEN

The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , ADN Polimerasa I/fisiología , Proteínas de Unión al ADN/fisiología , Células HCT116 , Humanos , Proteínas de Mantenimiento de Minicromosoma , Modelos Biológicos , Unión Proteica , Spodoptera , Xenopus , Proteínas de Xenopus/fisiología
19.
Proc Natl Acad Sci U S A ; 103(46): 17420-5, 2006 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17085585

RESUMEN

Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor.


Asunto(s)
Terapia de Inmunosupresión , Inmunosupresores/farmacología , Fármacos Fotosensibilizantes/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Luz Solar , Ácido Urocánico/farmacología , Animales , Sitios de Unión , Calcio/metabolismo , Línea Celular , Humanos , Inmunosupresores/química , Ratones , Estructura Molecular , Fármacos Fotosensibilizantes/química , Antagonistas de la Serotonina/farmacología , Spodoptera , Ácido Urocánico/química
20.
Cell ; 127(4): 759-73, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17110335

RESUMEN

DNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and Ser287 dephosphorylation. We show here that DNA-responsive checkpoints also activate PP2A/B56delta phosphatase complexes to dephosphorylate Cdc25 at a site distinct from Ser287 (T138), the phosphorylation of which is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Our data suggest that creation of a 14-3-3 "sink," consisting of phosphorylated 14-3-3 binding intermediate filament proteins, including keratins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56delta as a central checkpoint effector and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Mitosis , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Activación Enzimática , Células HCT116 , Células HeLa , Holoenzimas/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Interfase , Queratinas/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2 , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA