Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 10(37): 7306-15, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25090030

RESUMEN

The kinetics of registration of lipid domains in the apposing leaflets of symmetric bilayer membranes is investigated via systematic dissipative particle dynamics simulations. The decay of the distance between the centres of mass of the domains in the apposing leaflets is almost linear during early stages, and then becomes exponential during late times. The time scales of both linear and exponential decays are found to increase with decreasing strength of interleaflet coupling. The ratio between the time scales of the exponential and linear regimes decreases with increasing domain size, implying that the decay of the distance between the domains' centres of mass is essentially linear for large domains. These numerical results are largely in agreement with the recent theoretical predictions of Han and Haataja [Soft Matter, 2013, 9, 2120-2124]. We also found that the domains become elongated during the registration process.


Asunto(s)
Membrana Dobles de Lípidos/química , Membranas Artificiales , Anisotropía , Colesterol/química , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Lípidos/química , Modelos Teóricos , Estructura Terciaria de Proteína , Solventes/química , Termodinámica , Factores de Tiempo
2.
Comput Biol Med ; 39(5): 412-24, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19342013

RESUMEN

We presented an application of the Lattice Boltzmann method (LBM) to study the dynamics of Min proteins oscillations in Escherichia coli. The oscillations involve MinC, MinD and MinE proteins, which are required for proper placement of the division septum in the middle of a bacterial cell. Here, the LBM is applied to a set of the deterministic reaction diffusion equations which describes the dynamics of the Min proteins. This determines the midcell division plane at the cellular level. We specifically use the LBM to study the dynamic pole-to-pole oscillations of the Min proteins in two dimensions. We observed that Min proteins' pattern formation depends on the cell's shape. The LBM numerical results are in good agreement with previous findings, using other methods and agree qualitatively well with experimental results. Our results indicate that the LBM can be an alternative computational tool for simulating the dynamics of these Min protein systems and possibly for the study of complex biological systems which are described by reaction-diffusion equations. Moreover, these findings suggest that LBM could also be useful for the investigation of possible evolutionary connection between the cell's shape and cell division of E. coli. The results show that the oscillatory pattern of Min protein is the most consistent with experimental results when the dimension of the cell is 1 x 2. This suggests that as the cell's shape is close to being a square, the oscillatory pattern no longer places the cell division of E. coli at the proper location. These findings may have a significant implication on why, by natural selection, E. coli is maintained in a rod shape or bacillus form.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Algoritmos , Transporte Biológico/fisiología , División Celular/fisiología , Simulación por Computador , Difusión , Escherichia coli/citología , Escherichia coli/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA