Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(8): 4984-4994, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32181661

RESUMEN

Chemical forms of phosphorus (P) in airborne particulate matter (PM) are poorly known and do not correlate with solubility or extraction measurements commonly used to infer speciation. We used P X-ray absorption near-edge structure (XANES) and 31P nuclear magnetic resonance (NMR) spectroscopies to determine P species in PM collected at four mountain sites (Colorado and California). Organic P species dominated samples from high elevations, with organic P estimated at 65-100% of total P in bulk samples by XANES and 79-88% in extracted fractions (62-84% of total P) by NMR regardless of particle size (≥10 or 1-10 µm). Phosphorus monoester and diester organic species were dominant and present in about equal proportions, with low fractions of inorganic P species. By comparison, PM from low elevation contained mixtures of organic and inorganic P, with organic P estimated at 30-60% of total P. Intercontinental PM transport determined from radiogenic lead (Pb) isotopes varied from 0 to 59% (mean 37%) Asian-sourced Pb at high elevation, whereas stronger regional PM inputs were found at low elevation. Airborne flux of bioavailable P to high-elevation ecosystems may be twice as high as estimated by global models, which will disproportionately affect net primary productivity.


Asunto(s)
Material Particulado/análisis , Fósforo/análisis , Colorado , Ecosistema , Tamaño de la Partícula
2.
Environ Eng Sci ; 32(1): 14-22, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25565761

RESUMEN

Dissolved organic matter (DOM) is found in most natural waters at concentrations low enough to make DOM isolation methodologies critical to full analytical characterization and preservation. During the last few decades, two major protocols have been developed for the extraction of DOM isolates from natural waters. These methods utilize XAD resins and reverse osmosis (RO). In this work, the hydrophobic acid (May 2012 HPOA) and transphilic acid (May 2012 TPIA) isolates from XAD-8 and XAD-4 resins, respectively, were compared with the RO (May 2012 RO) natural organic matter isolate of the Suwannee River water using 13C nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. 13C NMR analysis showed that the May 2012 RO isolate could be viewed as a hybrid of the more hydrophobic May 2012 HPOA isolate and more hydrophilic May 2012 TPIA isolate. The May 2012 HPOA isolate is shown to be higher in alkyl and aromatic moieties, while the May 2012 TPIA isolate is higher in O-alkyl moieties. EPR analysis revealed that the May 2012 TPIA and, in particular, May 2012 HPOA isolates had higher radical concentrations than the May 2012 RO isolate. It is postulated that some of the radical concentrations came from the use of base during the isolation procedures, especially in the XAD method.

3.
Environ Sci Process Impacts ; 18(1): 42-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26647158

RESUMEN

Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.


Asunto(s)
Silicatos de Aluminio/química , Radicales Libres/química , Hierro/química , Modelos Químicos , Silicatos/química , Arcilla
4.
RSC Adv ; 6(49): 43453-43462, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28670444

RESUMEN

This paper systematically investigates how environmentally persistent free radicals (EPFRs) are formed in a phenol contaminated model soil. Poly-p-phenylene (PPP) modified and copper-loaded montmorillonite (MMT) clays were developed and used as models of soil organic matter and the clay mineral component, respectively, with phenol being employed as a precursor pollutant. The polymer modification of the clays was carried out via surface-confined Kumada catalyst-transfer chain-growth polymerization. The presence and location of the polymer were confirmed by a combination of thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction data. EPFRs were formed by the Cu(II)-clay (Cu(II)CaMMT) and poly-p-phenylene-Cu(II)clay (PPP-Cu(II)CaMMT) composite systems under environmentally relevant conditions. The g-factor and concentration of EPFRs formed by the Cu(II)CaMMT and PPP-Cu(II)CaMMT systems were found to be 2.0034 and 1.22 × 1017 spins/g and 2.0033 and 1.58 × 1017spins/g, respectively. These g-factors are consistent with the formation of phenoxyl radicals. Extended X-Ray absorption fine structure (EXAFS) analysis shows that there are distinct differences in the local stuctures of the phenoxyl radicals associated with only the Cu(II) redox centers and those formed in the presences of the PPP polymer. X-ray absorption near edge spectroscopy (XANES) results provided evidence for the reduction of Cu(II) to Cu(I) in the EPFR forming process. The 1/e lifetimes of the formed EPFRs revealed a decay time of ~20 h for the Cu(II)CaMMT system and a two-step decay pattern for the PPP-Cu(II)CaMMT system with decay times of ~13.5 h and ~55.6 h. Finally, the generation of reactive oxygen species (hydroxyl radical; •OH) by these clay systems was also investigated, with higher concentrations of •OH detected for the phenol-dosed Cu(II)CaMMT and PPP-Cu(II)CaMMT systems, compared to the non-EPFR containing undosed PPP-Cu(II)CaMMT system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA