Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Genet ; 138(2): 141-150, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30707351

RESUMEN

Systemic lupus erythematosus (SLE, OMIM 152700) is a systemic autoimmune disease with a complex etiology. The mode of inheritance of the genetic risk beyond familial SLE cases is currently unknown. Additionally, the contribution of heterozygous variants in genes known to cause monogenic SLE is not fully understood. Whole-genome sequencing of DNA samples from 71 Swedish patients with SLE and their healthy biological parents was performed to investigate the general genetic risk of SLE using known SLE GWAS risk loci identified using the ImmunoChip, variants in genes associated to monogenic SLE, and the mode of inheritance of SLE risk alleles in these families. A random forest model for predicting genetic risk for SLE showed that the SLE risk variants were mainly inherited from one of the parents. In the 71 patients, we detected a significant enrichment of ultra-rare ( ≤ 0.1%) missense and nonsense mutations in 22 genes known to cause monogenic forms of SLE. We identified one previously reported homozygous nonsense mutation in the C1QC (Complement C1q C Chain) gene, which explains the immunodeficiency and severe SLE phenotype of that patient. We also identified seven ultra-rare, coding heterozygous variants in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. Our findings indicate a complex contribution to the overall genetic risk of SLE by rare variants in genes associated with monogenic forms of SLE. The rare variants were inherited from the other parent than the one who passed on the more common risk variants leading to an increased genetic burden for SLE in the child. Higher frequency SLE risk variants are mostly passed from one of the parents to the offspring affected with SLE. In contrast, the other parent, in seven cases, contributed heterozygous rare variants in genes associated with monogenic forms of SLE, suggesting a larger impact of rare variants in SLE than hitherto reported.


Asunto(s)
Genoma Humano , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Lupus Eritematoso Sistémico/genética , Modelos Genéticos , Mutación Missense , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Riesgo
2.
Eur J Hum Genet ; 29(1): 184-193, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32724065

RESUMEN

By performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.


Asunto(s)
Frecuencia de los Genes , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Regiones Promotoras Genéticas
3.
Sci Rep ; 11(1): 15988, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362951

RESUMEN

The mechanisms driving clonal heterogeneity and evolution in relapsed pediatric acute lymphoblastic leukemia (ALL) are not fully understood. We performed whole genome sequencing of samples collected at diagnosis, relapse(s) and remission from 29 Nordic patients. Somatic point mutations and large-scale structural variants were called using individually matched remission samples as controls, and allelic expression of the mutations was assessed in ALL cells using RNA-sequencing. We observed an increased burden of somatic mutations at relapse, compared to diagnosis, and at second relapse compared to first relapse. In addition to 29 known ALL driver genes, of which nine genes carried recurrent protein-coding mutations in our sample set, we identified putative non-protein coding mutations in regulatory regions of seven additional genes that have not previously been described in ALL. Cluster analysis of hundreds of somatic mutations per sample revealed three distinct evolutionary trajectories during ALL progression from diagnosis to relapse. The evolutionary trajectories provide insight into the mutational mechanisms leading relapse in ALL and could offer biomarkers for improved risk prediction in individual patients.


Asunto(s)
Biomarcadores de Tumor/genética , Evolución Clonal , Mutación , Recurrencia Local de Neoplasia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Humanos , Recurrencia Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análisis de Secuencia de ARN/métodos , Secuenciación Completa del Genoma/métodos
4.
J Hematol Oncol ; 10(1): 148, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806978

RESUMEN

BACKGROUND: Structural chromosomal rearrangements that lead to expressed fusion genes are a hallmark of acute lymphoblastic leukemia (ALL). In this study, we performed transcriptome sequencing of 134 primary ALL patient samples to comprehensively detect fusion transcripts. METHODS: We combined fusion gene detection with genome-wide DNA methylation analysis, gene expression profiling, and targeted sequencing to determine molecular signatures of emerging ALL subtypes. RESULTS: We identified 64 unique fusion events distributed among 80 individual patients, of which over 50% have not previously been reported in ALL. Although the majority of the fusion genes were found only in a single patient, we identified several recurrent fusion gene families defined by promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5, and ZNF384, or recurrent fusion genes, such as DUX4-IGH. Our data show that patients harboring these fusion genes displayed characteristic genome-wide DNA methylation and gene expression signatures in addition to distinct patterns in single nucleotide variants and recurrent copy number alterations. CONCLUSION: Our study delineates the fusion gene landscape in pediatric ALL, including both known and novel fusion genes, and highlights fusion gene families with shared molecular etiologies, which may provide additional information for prognosis and therapeutic options in the future.


Asunto(s)
Metilación de ADN/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Factores de Transcripción , Transcriptoma
5.
Biomaterials ; 31(36): 9575-85, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20875917

RESUMEN

The recombinant miniature spider silk protein, 4RepCT, was used to fabricate film, foam, fiber and mesh matrices of different dimensionality, microstructure and nanotopography. These matrices were evaluated regarding their suitability for cell culturing. Human primary fibroblasts attached to and grew well on all matrix types, also in the absence of serum proteins or other animal-derived additives. The highest cell counts were obtained on matrices combining film and fiber/mesh. The cells showed an elongated shape that followed the structure of the matrices and exhibited prominent actin filaments. Moreover, the fibroblasts produced, secreted and deposited collagen type I onto the matrices. These results, together with findings of the matrices being mechanically robust, hold promise not only for in vitro cell culturing, but also for tissue engineering applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Proteínas Recombinantes/metabolismo , Seda/metabolismo , Arañas/química , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Matriz Extracelular/ultraestructura , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Seda/química , Seda/farmacología , Seda/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA