Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Astron (Dordr) ; 52(3): 407-437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153378

RESUMEN

The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky. It will specifically exploit large samples of gamma-ray bursts to probe the early universe back to the first generation of stars, and to advance multi-messenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these activities with multi-wavelength, multi-messenger facilities expected to be operating in the 2030s will open new avenues of exploration in many areas of astrophysics, cosmology and fundamental physics, thus adding considerable strength to the overall scientific impact of THESEUS and these facilities. We discuss here a number of these powerful synergies and guest observer opportunities.

2.
Nature ; 509(7499): 201-4, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776800

RESUMEN

Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

3.
Philos Trans A Math Phys Eng Sci ; 376(2120)2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29661981

RESUMEN

The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.

4.
Nature ; 455(7210): 183-8, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18784718

RESUMEN

Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

5.
Nature ; 453(7194): 469-74, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18497815

RESUMEN

Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

6.
Nature ; 444(7122): 1044-6, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17183315

RESUMEN

Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.

7.
Nature ; 442(7106): 1008-10, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16943830

RESUMEN

Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

8.
Nature ; 438(7070): 994-6, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16355219

RESUMEN

Two short (< 2 s) gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

9.
Nature ; 436(7053): 985-8, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16107840

RESUMEN

'Long' gamma-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the gamma-rays we see. As the jet travels further outward into the surrounding circumstellar medium, 'external' shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows.

10.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16208363

RESUMEN

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

11.
Science ; 358(6370): 1565-1570, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29038371

RESUMEN

With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow).

12.
Science ; 347(6224): 860-3, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25700515

RESUMEN

The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.

13.
Science ; 333(6039): 199-202, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21680811

RESUMEN

Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

14.
Science ; 309(5742): 1833-5, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16109845

RESUMEN

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

15.
Nature ; 416(6880): 512-5, 2002 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-11932738

RESUMEN

Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA