Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R110-R120, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009212

RESUMEN

Exercise intolerance is a hallmark symptom of heart failure and to a large extent stems from reductions in cardiac output that occur due to the inherent ventricular dysfunction coupled with enhanced muscle metaboreflex-induced functional coronary vasoconstriction, which limits increases in coronary blood flow. This creates a further mismatch between O2 delivery and O2 demand, which may activate the cardiac sympathetic afferent reflex (CSAR), causing amplification of the already increased sympathetic activity in a positive-feedback fashion. We used our chronically instrumented conscious canine model to evaluate if chronic ablation of afferents responsible for the CSAR would attenuate the gain of muscle metaboreflex before and after induction of heart failure. After afferent ablation, the gain of the muscle metaboreflex control of mean arterial pressure was significantly reduced before (-239.5 ± 16 to -95.2 ± 8 mmHg/L/min) and after the induction of heart failure (-185.6 ± 14 to -95.7 ± 12 mmHg/L/min). Similar results were observed for the strength (gain) of muscle metaboreflex control of heart rate, cardiac output, and ventricular contractility. Thus, we conclude that the CSAR contributes significantly to the strength of the muscle metaboreflex in normal animals with heart failure serving as an effective positive-feedback amplifier thereby further increasing sympathetic activity.NEW & NOTEWORTHY The powerful pressor responses from the CSAR arise via O2 delivery versus O2 demand imbalance. Muscle metaboreflex activation (MMA) simultaneously elicits coronary vasoconstriction (which is augmented in heart failure) and profound increases in cardiac work thereby upsetting oxygen balance. Whether MMA activates the CSAR thereby amplifying MMA responses is unknown. We observed that removal of the CSAR afferents attenuated the strength of the muscle metaboreflex in normal and subjects with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Músculo Esquelético , Animales , Perros , Humanos , Retroalimentación , Vasoconstricción , Reflejo/fisiología , Frecuencia Cardíaca , Presión Sanguínea
2.
Exp Physiol ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460125

RESUMEN

The ability to increase cardiac output during dynamic exercise is paramount for the ability to maintain workload performance. Reflex control of the cardiovascular system during exercise is complex and multifaceted involving multiple feedforward and feedback systems. One major reflex thought to mediate the autonomic adjustments to exercise is termed the muscle metaboreflex and is activated via afferent neurons within active skeletal muscle which respond to the accumulation of interstitial metabolites during exercise when blood flow and O2 delivery are insufficient to meet metabolic demands. This is one of the most powerful cardiovascular reflexes capable of eliciting profound increases in sympathetic nerve activity, arterial blood pressure, central blood volume mobilization, heart rate and cardiac output. This review summarizes the mechanisms meditating muscle metaboreflex-induced increases in cardiac output. Although much has been learned from studies using anaesthetized and/or decerebrate animals, we focus on studies in conscious animals and humans performing volitional exercise. We discuss the separate and interrelated roles of heart rate, ventricular contractility, ventricular preload and ventricular-vascular coupling as well as the interaction with other cardiovascular reflexes which modify muscle metaboreflex control of cardiac output. We discuss how these mechanisms may be altered in subjects with heart failure with reduced ejection fraction and offer suggestions for future studies.

3.
J Physiol ; 600(22): 4779-4806, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121759

RESUMEN

The assessment of left ventricular (LV) contractility in animal models is useful in various experimental paradigms, yet obtaining such measures is inherently challenging and surgically invasive. In a cross-species study using small and large animals, we comprehensively tested the agreement and validity of multiple single-beat surrogate metrics of LV contractility against the field-standard metrics derived from inferior vena cava occlusion (IVCO). Fifty-six rats, 27 minipigs and 11 conscious dogs underwent LV and arterial catheterization and were assessed for a range of single-beat metrics of LV contractility. All single-beat metrics were tested for the various underlying assumptions required to be considered a valid metric of cardiac contractility, including load-independency, sensitivity to inotropic stimulation, and ability to diagnose contractile dysfunction in cardiac disease. Of all examined single-beat metrics, only LV maximal pressure normalized to end-diastolic volume (EDV), end-systolic pressure normalized to EDV, and the maximal rate of rise of the LV pressure normalized to EDV showed a moderate-to-excellent agreement with their IVCO-derived reference measure and met all the underlying assumptions required to be considered as a valid cardiac contractile metric in both rodents and large-animal models. Our findings demonstrate that single-beat metrics can be used as a valid, reliable method to quantify cardiac contractile function in basic/preclinical experiments utilizing small- and large-animal models KEY POINTS: Validating and comparing indices of cardiac contractility that avoid caval occlusion would offer considerable advantages for the field of cardiovascular physiology. We comprehensively test the underlying assumptions of multiple single-beat indices of cardiac contractility in rodents and translate these findings to pigs and conscious dogs. We show that when performing caval occlusion is unfeasible, single-beat metrics can be utilized to accurately quantify cardiac inotropic function in basic and preclinical research employing various small and large animal species. We report that maximal left-ventricular (LV)-pressure normalized to end-diastolic volume (EDV), LV end-systolic pressure normalized to EDV and the maximal rate of rise of the LV pressure waveform normalized to EDV are the best three single-beat metrics to measure cardiac inotropic function in both small- and large-animal models.


Asunto(s)
Benchmarking , Función Ventricular Izquierda , Animales , Perros , Ratas , Porcinos , Función Ventricular Izquierda/fisiología , Porcinos Enanos , Contracción Miocárdica/fisiología , Ventrículos Cardíacos , Volumen Sistólico/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R720-R727, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121147

RESUMEN

Rapid regulation of arterial blood pressure on a beat-by-beat basis occurs primarily via arterial baroreflex control of cardiac output (CO) via rapid changes in heart rate (HR). Previous studies have shown that changes in HR do not always cause changes in CO, because stroke volume may vary. Whether these relationships are altered in hypertension is unknown. Using the spontaneous baroreflex sensitivity (SBRS) approach, we investigated whether baroreflex control of HR and CO were impaired after the induction of hypertension in conscious, chronically instrumented canines at rest, during mild exercise, and during exercise with metaboreflex activation (induced via reductions in hindlimb blood flow) both before and after induction of hypertension (induced via a modified Goldblatt approach-unilateral reduction in renal blood flow to ∼30% of control values until systolic pressure ≥ 140 mmHg and a diastolic pressure ≥ 90 mmHg for >30 days). After induction of hypertension, SBRS control of both HR and CO was reduced in all settings. In control, only about 50% of SBRS changes in HR caused changes in CO. This pattern was sustained in hypertension. Thus, in hypertension, the reduced SBRS in the control of HR caused reduced SBRS control of CO and this likely contributes to the increased incidence of orthostatic hypotension seen in hypertensive patients.


Asunto(s)
Barorreflejo , Hipertensión , Perros , Animales , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético/fisiología , Gasto Cardíaco/fisiología , Presión Sanguínea/fisiología
5.
Ecol Appl ; 32(6): e2583, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35333428

RESUMEN

Climate change is widely known to affect plant phenology, but little is known about how these impacts manifest in the widespread sagebrush ecosystem of the Western United States, which supports a number of wildlife species of concern. Shifts in plant phenology can trigger consequences for the plants themselves as well as the communities of consumers that depend upon them. We assembled historical observations of first-flowering dates for 51 species collected in the 1970s and 1980s in a montane sagebrush community in the Greater Yellowstone Ecosystem and compared these to contemporary phenological observations targeting the same species and locations (2016-2019). We also assembled regional climate data (average spring temperature, day of spring snowmelt, and growing degree days) and tested the relationship between first-flowering time and these variables for each species. We observed the largest change in phenology in early-spring flowers, which, as a group, bloomed on average 17 days earlier, and as much as 36 days earlier, in the contemporary data set. Mid-summer flowers bloomed on average 10 days earlier, nonnative species 15 days earlier, and berry-producing shrubs 5 days earlier, while late summer flowering plants did not shift. The greatest correlates of early-spring and mid-summer flowering were average spring temperature and day of snowmelt, which was 21 days earlier, on average, in 2016-2019 relative to the 1973-1978 observations. The shifts in flowering phenology that we observed could indicate developing asynchronies or novel synchronies of these plant resources and wildlife species of conservation concern, including Greater Sage-grouse, whose nesting success is tied to availability of spring forbs; grizzly bears, which rely heavily on berries for their fall diet; and pollinators. This underscores the importance of maintaining a diverse portfolio of native plants in terms of species composition, genetics, phenological responsiveness to climatic cues, and ecological importance to key wildlife and pollinator species. Redundancy within ecological niches may also be important considering that species roles in the community may shift as climate change affects them differently. These considerations are particularly relevant to restoration and habitat-enhancement projects in sagebrush communities across western North America.


Asunto(s)
Artemisia , Ecosistema , Cambio Climático , Flores , Plantas , Estaciones del Año , Temperatura
6.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259041

RESUMEN

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Asunto(s)
Gasto Cardíaco/efectos de los fármacos , Diterpenos/farmacología , Miembro Posterior/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Gasto Cardíaco/fisiología , Diterpenos/administración & dosificación , Perros , Corazón/efectos de los fármacos , Corazón/fisiopatología , Miembro Posterior/fisiopatología , Isquemia/fisiopatología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Flujo Sanguíneo Regional/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción/fisiología
7.
Exp Physiol ; 106(2): 401-411, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226720

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the muscle metaboreflex affect the ratio of left ventricular contraction/relaxation rates and does heart failure impact this relationship. What is the main finding and its importance? The effect of muscle metaboreflex activation on the ventricular relaxation rate was significantly attenuated in heart failure. Heart failure attenuates the exercise and muscle metaboreflex-induced changes in the contraction/relaxation ratio. In heart failure, the reduced ability to raise cardiac output during muscle metaboreflex activation may not solely be due to attenuation of ventricular contraction but also alterations in ventricular relaxation and diastolic function. ABSTRACT: The relationship between contraction and relaxation rates of the left ventricle varies with exercise. In in vitro models, this ratio was shown to be relatively unaltered by changes in sarcomere length, frequency of stimulation, and ß-adrenergic stimulation. We investigated whether the ratio of contraction to relaxation rate is maintained in the whole heart during exercise and muscle metaboreflex activation and whether heart failure alters these relationships. We observed that in healthy subjects the ratio of contraction to relaxation increases from rest to exercise as a result of a higher increase in contraction relative to relaxation. During muscle metaboreflex activation the ratio of contraction to relaxation is significantly reduced towards 1.0 due to a large increase in relaxation rate matching contraction rate. In heart failure, contraction and relaxation rates are significantly reduced, and increases during exercise are attenuated. A significant increase in the ratio was observed from rest to exercise although baseline ratio values were significantly reduced close to 1.0 when compared to healthy subjects. There was no significant change observed between exercise and muscle metaboreflex activation nor was the ratio during muscle metaboreflex activation significantly different between heart failure and control. We conclude that heart failure reduces the muscle metaboreflex gain and contraction and relaxation rates. Furthermore, we observed that the ratio of the contraction and relaxation rates during muscle metaboreflex activation is not significantly different between control and heart failure, but significant changes in the ratio in healthy subjects due to increased relaxation rate were abolished in heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Corazón/fisiopatología , Contracción Miocárdica/fisiología , Reflejo/fisiología , Animales , Gasto Cardíaco/fisiología , Modelos Animales de Enfermedad , Perros , Femenino , Hemodinámica/fisiología , Masculino , Resistencia Vascular/fisiología
8.
Am J Physiol Heart Circ Physiol ; 318(1): H90-H109, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31702969

RESUMEN

Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Células Quimiorreceptoras/metabolismo , Isquemia , Contracción Muscular , Músculo Esquelético/anomalías , Músculo Esquelético/inervación , Acondicionamiento Físico Humano/métodos , Reflejo , Oclusión Terapéutica , Adaptación Fisiológica , Animales , Metabolismo Energético , Femenino , Hemodinámica , Humanos , Masculino , Músculo Esquelético/metabolismo , Acondicionamiento Físico Humano/efectos adversos , Flujo Sanguíneo Regional , Medición de Riesgo , Oclusión Terapéutica/efectos adversos
9.
Am J Physiol Heart Circ Physiol ; 318(5): H1100-H1138, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196357

RESUMEN

Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Condicionamiento Físico Animal/métodos , Guías de Práctica Clínica como Asunto , Comités de Atención Animal , Animales , Modelos Animales de Enfermedad , Condicionamiento Físico Animal/ética , Condicionamiento Físico Animal/normas , Especificidad de la Especie
10.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R1-R10, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348680

RESUMEN

Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance (Ea) to left ventricular maximal elastance (Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume (EaPV)] and [heart rate × vascular resistance (EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.


Asunto(s)
Arterias/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Animales , Arterias/inervación , Perros , Elasticidad , Femenino , Frecuencia Cardíaca , Miembro Posterior/irrigación sanguínea , Masculino , Músculo Esquelético/inervación , Neuronas Aferentes , Reflejo/fisiología , Volumen Sistólico , Resistencia Vascular
11.
Am J Physiol Heart Circ Physiol ; 316(5): H1047-H1052, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822120

RESUMEN

Underperfusion of active skeletal muscle causes metabolites to accumulate and stimulate group III and IV skeletal muscle afferents, which triggers a powerful pressor response termed the muscle metaboreflex. Muscle metaboreflex activation (MMA) during submaximal dynamic exercise in healthy individuals increases arterial pressure mainly via substantial increases in cardiac output (CO). The increases in CO occur via the combination of tachycardia and increased ventricular contractility. Importantly, MMA also elicits substantial central blood volume mobilization, which allows the ventricular responses to sustain the increases in CO. Otherwise preload would fall and the increases in CO could not be maintained. In subjects with systolic heart failure (HF), the ability to increase CO during exercise and MMA is markedly reduced, which has been attributed to impaired ventricular contractility. Whether the ability to maintain preload during MMA in HF is preserved is unknown. Using a conscious chronically instrumented canine model, we observed that MMA in HF is able to raise central blood volume similarly as in normal subjects. Therefore, the loss of the ability to raise CO during MMA in HF is not because of the loss of the ability to mobilize blood volume centrally. NEW & NOTEWORTHY In normal subjects during dynamic exercise muscle metaboreflex activation elicits large increases in cardiac output that occur via increases in heart rate, ventricular contractility, and, importantly, marked central blood volume mobilization that acts to maintain ventricular preload, thereby allowing the changes in cardiac function to maintain the increases in cardiac output. In subjects with heart failure, the ability to raise cardiac output during muscle metaboreflex activation is impaired. We investigated whether this is because of the inability to maintain ventricular preload. We found that this reflex is still able to elicit large increases in central blood volume, and therefore the limited ability to raise cardiac output likely stems from ventricular dysfunction and not the ability to maintain preload.


Asunto(s)
Volumen Sanguíneo , Gasto Cardíaco , Células Quimiorreceptoras/metabolismo , Tolerancia al Ejercicio , Insuficiencia Cardíaca/fisiopatología , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inervación , Reflejo , Animales , Presión Arterial , Presión Venosa Central , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Frecuencia Cardíaca , Homeostasis , Masculino , Músculo Esquelético/metabolismo , Carrera , Factores de Tiempo
12.
Am J Physiol Heart Circ Physiol ; 316(6): H1332-H1340, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30875256

RESUMEN

Autonomic dysreflexia (AD) often occurs in individuals living with spinal cord injury (SCI) and is characterized by uncontrolled hypertension in response to otherwise innocuous stimuli originating below the level of the spinal lesion. Visceral stimulation is a predominant cause of AD in humans and effectively replicates the phenotype in rodent models of SCI. Direct assessment of sympathetic responses to viscerosensory stimulation in spinalized animals is challenging and requires invasive surgical procedures necessitating the use of anesthesia. However, administration of anesthesia markedly affects viscerosensory reactivity, and the effects are exacerbated following spinal cord injury (SCI). Therefore, the major goal of the present study was to develop a decerebrate rodent preparation to facilitate quantification of sympathetic responses to visceral stimulation in the spinalized rat. Such a preparation enables the confounding effect of anesthesia to be eliminated. Sprague-Dawley rats were subjected to SCI at the fourth thoracic segment. Four weeks later, renal sympathetic nerve activity (RSNA) responses to visceral stimuli were quantified in urethane/chloralose-anesthetized and decerebrate preparations. Visceral stimulation was elicited via colorectal distension (CRD) for 1 min. In the decerebrate preparation, CRD produced dose-dependent increases in mean arterial pressure (MAP) and RSNA and dose-dependent decreases in heart rate (HR). These responses were significantly greater in magnitude among decerebrate animals when compared with urethane/chloralose-anesthetized controls and were markedly attenuated by the administration of urethane/chloralose anesthesia after decerebration. We conclude that the decerebrate preparation enables high-fidelity quantification of neuronal reactivity to visceral stimulation in spinalized rats. NEW & NOTEWORTHY In animal models commonly used to study spinal cord injury, quantification of sympathetic responses is particularly challenging due to the increased susceptibility of spinal reflex circuits to the anesthetic agents generally required for experimentation. This constitutes a major limitation to understanding the mechanisms mediating regionally specific neuronal responses to visceral activation in chronically spinalized animals. In the present study, we describe a spinalized, decerebrate rodent preparation that facilitates quantification of sympathetic reactivity in response to visceral stimuli following spinal cord injury. This preparation enables reliable and reproducible quantification of viscero-sympathetic reflex responses resembling those elicited in conscious animals and may provide added utility for preclinical evaluation of neuropharmacological agents for the management of autonomic dysreflexia.


Asunto(s)
Disreflexia Autónoma/fisiopatología , Estado de Descerebración , Riñón/inervación , Reflejo , Médula Espinal/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Anestésicos Intravenosos/farmacología , Animales , Cloralosa/farmacología , Modelos Animales de Enfermedad , Hemodinámica , Masculino , Ratas Sprague-Dawley , Uretano/farmacología
13.
Am J Physiol Heart Circ Physiol ; 314(1): H11-H18, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939649

RESUMEN

When oxygen delivery to active muscle is insufficient to meet the metabolic demand during exercise, metabolites accumulate and stimulate skeletal muscle afferents, inducing a reflex increase in blood pressure, termed the muscle metaboreflex. In healthy individuals, muscle metaboreflex activation (MMA) during submaximal exercise increases arterial pressure primarily via an increase in cardiac output (CO), as little peripheral vasoconstriction occurs. This increase in CO partially restores blood flow to ischemic muscle. However, we recently demonstrated that MMA induces sympathetic vasoconstriction in ischemic active muscle, limiting the ability of the metaboreflex to restore blood flow. In heart failure (HF), increases in CO are limited, and metaboreflex-induced pressor responses occur predominantly via peripheral vasoconstriction. In the present study, we tested the hypothesis that vasoconstriction of ischemic active muscle is exaggerated in HF. Changes in hindlimb vascular resistance [femoral arterial pressure ÷ hindlimb blood flow (HLBF)] were observed during MMA (via graded reductions in HLBF) during mild exercise with and without α1-adrenergic blockade (prazosin, 50 µg/kg) before and after induction of HF. In normal animals, initial HLBF reductions caused metabolic vasodilation, while reductions below the metaboreflex threshold elicited reflex vasoconstriction, in ischemic active skeletal muscle, which was abolished after α1-adrenergic blockade. Metaboreflex-induced vasoconstriction of ischemic active muscle was exaggerated after induction of HF. This heightened vasoconstriction impairs the ability of the metaboreflex to restore blood flow to ischemic muscle in HF and may contribute to the exercise intolerance observed in these patients. We conclude that sympathetically mediated vasoconstriction of ischemic active muscle during MMA is exaggerated in HF. NEW & NOTEWORTHY We found that muscle metaboreflex-induced vasoconstriction of the ischemic active skeletal muscle from which the reflex originates is exaggerated in heart failure. This results in heightened metaboreflex activation, which further amplifies the reflex-induced vasoconstriction of the ischemic active skeletal muscle and contributes to exercise intolerance in patients.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/fisiopatología , Isquemia/fisiopatología , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inervación , Reflejo , Vasoconstricción , Animales , Presión Arterial , Gasto Cardíaco , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Miembro Posterior , Isquemia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Oxígeno/sangre , Receptores Adrenérgicos alfa 1/metabolismo , Vasodilatación
14.
Am J Physiol Heart Circ Physiol ; 315(5): H1383-H1392, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30074841

RESUMEN

Two powerful reflexes controlling cardiovascular function during exercise are the muscle metaboreflex and arterial baroreflex. In heart failure (HF), the strength and mechanisms of these reflexes are altered. Muscle metaboreflex activation (MMA) in normal subjects increases mean arterial pressure (MAP) primarily via increases in cardiac output (CO), whereas in HF the mechanism shifts to peripheral vasoconstriction. Baroreceptor unloading increases MAP via peripheral vasoconstriction, and this pressor response is blunted in HF. Baroreceptor unloading during MMA in normal animals elicits an enormous pressor response via combined increases in CO and peripheral vasoconstriction. The mode of interaction between these reflexes is intimately dependent on the parameter (e.g., MAP and CO) being investigated. The interaction between the two reflexes when activated simultaneously during dynamic exercise in HF is unknown. We activated the muscle metaboreflex in chronically instrumented dogs during mild exercise (via graded reductions in hindlimb blood flow) followed by baroreceptor unloading [via bilateral carotid occlusion (BCO)] before and after induction of HF. We hypothesized that BCO during MMA in HF would cause a smaller increase in MAP and a larger vasoconstriction of ischemic hindlimb vasculature, which would attenuate the restoration of blood flow to ischemic muscle observed in normal dogs. We observed that BCO during MMA in HF increases MAP by substantial vasoconstriction of all vascular beds, including ischemic active muscle, and that all cardiovascular responses, except ventricular function, exhibit occlusive interaction. We conclude that vasoconstriction of ischemic active skeletal muscle in response to baroreceptor unloading during MMA attenuates restoration of hindlimb blood flow. NEW & NOTEWORTHY We found that baroreceptor unloading during the muscle metaboreflex in heart failure results in occlusive interaction (except for ventricular function) with significant vasoconstriction of all vascular beds. In addition, restoration of blood flow to ischemic active muscle, via preferentially larger vasoconstriction of nonischemic beds, is significantly attenuated in heart failure.


Asunto(s)
Presión Arterial , Barorreflejo , Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Presorreceptores/fisiopatología , Adaptación Fisiológica , Animales , Gasto Cardíaco , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Miembro Posterior , Masculino , Contracción Muscular , Flujo Sanguíneo Regional , Factores de Tiempo , Vasoconstricción
15.
Int J Biometeorol ; 62(2): 273-285, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28965255

RESUMEN

Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine (Pinus albicaulis) in alpine and subalpine areas.


Asunto(s)
Estaciones del Año , Nieve , Tracheophyta/crecimiento & desarrollo , Bosques , Oregon , Parques Recreativos , Imágenes Satelitales , Temperatura
16.
Am J Physiol Heart Circ Physiol ; 312(1): H68-H79, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769997

RESUMEN

Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex. As SNA is heightened even at rest in subjects with hypertension (HTN), we tested whether HTN causes exaggerated coronary vasoconstriction in canines during mild treadmill exercise with muscle metaboreflex activation (MMA; elicited by reducing hindlimb blood flow by ~60%) thereby limiting increases in CBF and ventricular performance. Experiments were repeated after α1-adrenergic blockade (prazosin; 75 µg/kg) and in the same animals following induction of HTN (modified Goldblatt 2K1C model). HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and MMA-induced increases in CBF, left ventricular dP/dtmax, and cardiac output were markedly reduced to only 32 ± 13, 26 ± 11, and 28 ± 12% of the changes observed in control. In HTN, α1-adrenergic blockade restored the coronary vasodilation and increased in ventricular function to the levels observed when normotensive. We conclude that exaggerated MMA-induced increases in SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF, which limits oxygen delivery and ventricular performance in HTN. NEW & NOTEWORTHY: We found that metaboreflex-induced increases in coronary blood flow and ventricular contractility are attenuated in hypertension. α1-Adrenergic blockade restored these parameters toward normal levels. These findings indicate that the primary mechanism mediating impaired metaboreflex-induced increases in ventricular function in hypertension is accentuated coronary vasoconstriction.


Asunto(s)
Gasto Cardíaco/fisiología , Circulación Coronaria/fisiología , Vasos Coronarios/fisiopatología , Hipertensión Renovascular/fisiopatología , Condicionamiento Físico Animal , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción/fisiología , Función Ventricular/fisiología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Presión Arterial , Gasto Cardíaco/efectos de los fármacos , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Perros , Femenino , Miembro Posterior/irrigación sanguínea , Hipertensión/fisiopatología , Músculo Esquelético/irrigación sanguínea , Prazosina/farmacología , Reflejo , Sistema Nervioso Simpático/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Función Ventricular/efectos de los fármacos
17.
Am J Physiol Regul Integr Comp Physiol ; 313(1): R29-R34, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490452

RESUMEN

The muscle metaboreflex is a powerful pressor reflex induced by the activation of chemically sensitive muscle afferents as a result of metabolite accumulation. During submaximal dynamic exercise, the rise in arterial pressure is primarily due to increases in cardiac output, since there is little systemic vasoconstriction. Indeed, in normal animals, we have often shown a small, but significant, peripheral vasodilation during metaboreflex activation, which is mediated, at least in part, by release of epinephrine and activation of vascular ß2-receptors. We tested whether this vasodilation is in part due to increased release of nitric oxide caused by the rise in cardiac output eliciting endothelium-dependent flow-mediated vasodilation. The muscle metaboreflex was activated via graded reductions in hindlimb blood flow during mild exercise with and without nitric oxide synthesis blockade [NG-nitro-l-arginine methyl ester (l-NAME); 5 mg/kg]. We assessed the role of increased cardiac output in mediating peripheral vasodilation via the slope of the relationship between the rise in nonischemic vascular conductance (conductance of all vascular beds excluding hindlimbs) vs. the rise in cardiac output. l-NAME increased mean arterial pressure at rest and during exercise. The metaboreflex-induced increases in mean arterial pressure were unaltered by l-NAME, whereas the increases in cardiac output and nonischemic vascular conductance were attenuated. However, the slope of the relationship between nonischemic vascular conductance and cardiac output was not affected by l-NAME, indicating that the rise in cardiac output did not elicit vasodilation via increased release of nitric oxide. Thus, although nitric oxide is intrinsic to the vascular tonus, endothelial-dependent flow-mediated vasodilation plays little role in the small peripheral vasodilation observed during muscle metaboreflex activation.


Asunto(s)
Conductividad Eléctrica , Endotelio Vascular/fisiología , Músculo Esquelético/fisiología , Óxido Nítrico/metabolismo , Reflejo/fisiología , Animales , Perros , Femenino , Masculino
18.
Am J Physiol Heart Circ Physiol ; 311(5): H1268-H1276, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27614226

RESUMEN

The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.


Asunto(s)
Presión Arterial/fisiología , Barorreflejo/fisiología , Gasto Cardíaco/fisiología , Isquemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Contracción Miocárdica/fisiología , Flujo Sanguíneo Regional/fisiología , Vasoconstricción/fisiología , Animales , Arterias Carótidas , Perros , Femenino , Frecuencia Cardíaca , Miembro Posterior/irrigación sanguínea , Masculino , Presorreceptores , Reflejo
19.
Am J Physiol Heart Circ Physiol ; 309(1): H185-97, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25910812

RESUMEN

Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 µg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.


Asunto(s)
Biguanidas/farmacología , Receptor de Adenosina A2A/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Reflejo/fisiología , Agonistas de Receptores de Serotonina/farmacología , Núcleo Solitario/metabolismo , Sistema Nervioso Simpático/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Bicuculina/farmacología , Antagonistas del GABA/farmacología , Corazón/efectos de los fármacos , Microinyecciones , Morfolinas/farmacología , Fenetilaminas/farmacología , Ratas , Reflejo/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos
20.
Am J Physiol Heart Circ Physiol ; 309(3): H381-92, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26024683

RESUMEN

The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered.


Asunto(s)
Arterias/fisiología , Barorreflejo , Sistema Nervioso Central/fisiología , Ejercicio Físico , Músculo Esquelético/fisiología , Sistema Vasomotor/fisiología , Animales , Arterias/inervación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA