Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 149(2): 295-306, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22484060

RESUMEN

Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.


Asunto(s)
Interacción Gen-Ambiente , Escoliosis/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Haploinsuficiencia , Humanos , Hipoxia/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Linaje , Penetrancia , Receptores Notch/metabolismo , Escoliosis/congénito , Transducción de Señal , Columna Vertebral/embriología
2.
Hum Mol Genet ; 29(4): 566-579, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31813956

RESUMEN

Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.


Asunto(s)
Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Genómica/métodos , Cardiopatías Congénitas/patología , Mutación , Receptor Notch1/genética , Animales , Estudios de Casos y Controles , Femenino , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Secuenciación del Exoma
3.
Development ; 146(4)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787001

RESUMEN

Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.


Asunto(s)
Interacción Gen-Ambiente , Cardiopatías Congénitas/genética , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Apoptosis , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Corazón/diagnóstico por imagen , Heterocigoto , Proteína Homeótica Nkx-2.5/fisiología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxígeno/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas de Dominio T Box/genética , Factores de Tiempo
4.
Development ; 143(14): 2561-72, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27436040

RESUMEN

Congenital heart disease (CHD) is an enigma. It is the most common human birth defect and yet, even with the application of modern genetic and genomic technologies, only a minority of cases can be explained genetically. This is because environmental stressors also cause CHD. Here we propose a plausible non-genetic mechanism for induction of CHD by environmental stressors. We show that exposure of mouse embryos to short-term gestational hypoxia induces the most common types of heart defect. This is mediated by the rapid induction of the unfolded protein response (UPR), which profoundly reduces FGF signaling in cardiac progenitor cells of the second heart field. Thus, UPR activation during human pregnancy might be a common cause of CHD. Our findings have far-reaching consequences because the UPR is activated by a myriad of environmental or pathophysiological conditions. Ultimately, our discovery could lead to preventative strategies to reduce the incidence of human CHD.


Asunto(s)
Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/patología , Estrés Fisiológico , Respuesta de Proteína Desplegada , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/patología , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Endogámicos C57BL , Oxígeno/farmacología , Fenotipo , Embarazo , Biosíntesis de Proteínas/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
5.
Hum Mol Genet ; 24(5): 1234-42, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343988

RESUMEN

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Heterocigoto , Mutación , Proteínas Represoras/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Codón sin Sentido , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Exoma , Exones , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/genética , Linaje , Carácter Cuantitativo Heredable , Empalme del ARN , Proteínas Represoras/metabolismo , Somitos/metabolismo , Columna Vertebral/patología , Proteínas de Dominio T Box , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Dev Biol ; 391(1): 99-110, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24657234

RESUMEN

Mammalian embryos develop in a low oxygen environment. The transcription factor hypoxia inducible factor 1a (HIF1α) is a key element in the cellular response to hypoxia. Complete deletion of Hif1α from the mouse conceptus causes extensive placental, vascular and heart defects, resulting in embryonic lethality. However the precise role of Hif1α in each of these organ systems remains unknown. To further investigate, we conditionally-deleted Hif1α from mesoderm, vasculature and heart individually. Surprisingly, deletion from these tissues did not recapitulate the same severe heart phenotype or embryonic lethality. Placental insufficiency, such as occurs in the complete Hif1α null, results in elevated cellular hypoxia in mouse embryos. We hypothesized that subjecting the Hif1α conditional null embryos to increased hypoxic stress might exacerbate the effects of tissue-specific Hif1α deletion. We tested this hypothesis using a model system mimicking placental insufficiency. We found that the majority of embryos lacking Hif1α in the heart died when exposed to non-physiological hypoxia. This was a heart-specific phenomenon, as HIF1α protein accumulated predominantly in the myocardium of hypoxia-stressed embryos. Our study demonstrates the vulnerability of the heart to lowered oxygen levels, and that under such conditions of non-physiological hypoxia the embryo absolutely requires Hif1α to continue normal development. Importantly, these findings extend our understanding of the roles of Hif1α in cardiovascular development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Corazón/embriología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Alelos , Animales , Hipoxia de la Célula , Núcleo Celular/metabolismo , Proliferación Celular , Células Endoteliales/citología , Femenino , Eliminación de Gen , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis , Miocardio/metabolismo , Oxígeno/metabolismo , Fenotipo , Placenta/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA