RESUMEN
Besides the well-recognized influence of maternal health on fetal in utero development, recent epidemiological studies appoint paternal preconception metabolic health as a significant factor in shaping fetal metabolic programming and subsequently offspring metabolic health; however, mechanisms behind these adaptations remain confined to animal models. To elucidate the effects of paternal obesity (P-OB) on infant metabolism in humans, we examined mesenchymal stem cells (MSCs), which give rise to infant tissue, remain involved in mature tissue maintenance, and resemble the phenotype of the offspring donor. Here, we assessed mitochondrial functional capacity, content, and insulin action in MSC from infants of fathers with overweight [body mass index (BMI: 25-30 kg/m2); paternal overweight (P-OW)] or obesity (BMI ≥ 30 kg/m2; P-OB) while controlling for maternal intrauterine environment. Compared with P-OW, infant MSCs in the P-OB group had lower intact cell respiration, OXPHOS, and electron transport system capacity, independent of any changes in mitochondrial content. Furthermore, glucose handling, insulin action, lipid content, and oxidation were similar between groups. Importantly, infants in the P-OB group had a greater weight-to-length ratio, which could be in part due to changes in MSC metabolic functioning, which precedes and, therefore, influences infant growth trajectories. These data suggest that P-OB negatively influences infant MSC mitochondria. ClinicalTrials.gov Identifier: NCT03838146.NEW & NOTEWORTHY Paternal obesity decreases infant mesenchymal stem cell (MSC) basal and maximal respiration. Lower OXPHOS and electron transport system capacity could be explained by lower complex I and IV respiratory capacity but not changes in OXPHOS expression in infant MSC from fathers with obesity. Paternal obesity and altered MSC mitochondrial functional capacity are associated with a greater infant weight-to-length ratio at birth.
Asunto(s)
Padre , Células Madre Mesenquimatosas , Mitocondrias , Obesidad , Adulto , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Fosforilación OxidativaRESUMEN
Maternal obesity [body mass index (BMI) > 30 kg/m2] is associated with greater neonatal adiposity, cord blood (CB) insulin levels, and a proinflammatory phenotype at birth, contributing to risk of future cardiometabolic disease in the offspring. Variation in neonatal adiposity within maternal BMI groups is underappreciated, and it remains unclear whether the metabolic impairments at birth are an outcome of maternal obesity or excess fetal fat accrual. We examined the hypothesis that CB metabolites associated with fetal fat accrual differ between offspring of normal-weight and obese women. Umbilical venous blood was collected at the time of scheduled cesarean delivery from 50 normal-weight women (LE; pregravid BMI = 22.3 ± 1.7 kg/m2) and 50 obese women (OB; BMI = 34.5 ± 3.0 kg/m2). Neonatal adiposity was estimated from flank skinfold thickness. The first (low adiposity, LA) and third (high adiposity, HA) tertiles of neonatal %body fat were used to create four groups: OBLA, OBHA, LELA, and LEHA. CB metabolites were measured via untargeted metabolomics. Broadly, the LA offspring of OB women (OBLA) metabolite signature differed from other groups. Lauric acid (C12:0) was 82-118% higher in OBLA vs. all other groups [false discovery rate (FDR) < 0.01]. Several other fatty acids, including palmitate, stearate, and linoleate, were higher in OBLA vs. OBHA groups. CB metabolites, such as lauric acid, a medium-chain fatty acid that may improve insulin sensitivity, were associated with neonatal adiposity differently between offspring of women with and without obesity. Changes in metabolically active lipids at birth may have long-term consequences for offspring metabolism.NEW & NOTEWORTHY Using untargeted metabolomics in 100 newborns, we found that cord blood metabolite signatures associated with neonatal adiposity differed between offspring of women with and without obesity.
Asunto(s)
Adiposidad , Obesidad Materna , Peso al Nacer , Índice de Masa Corporal , Femenino , Humanos , Recién Nacido , Ácidos Láuricos , Metabolómica , Obesidad/metabolismo , EmbarazoRESUMEN
Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[-6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.
Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Feto/fisiología , Neovascularización Patológica , Placenta/irrigación sanguínea , Animales , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/inmunología , Retardo del Crecimiento Fetal/patología , Células Asesinas Naturales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/etiología , Neovascularización Patológica/inmunología , Neovascularización Patológica/fisiopatología , Placenta/inmunología , Placenta/patología , Placentación/fisiología , Embarazo , Caracteres Sexuales , Diferenciación Sexual/fisiología , Útero/irrigación sanguínea , Útero/inmunología , Útero/patologíaRESUMEN
BACKGROUND: Birth weight percentiles provide limited information on qualitative infant growth. Body composition provides estimates of fat mass, fat-free mass, and body fat percentage (adiposity). We sought to implement assessment of body composition at birth into clinical practice using a validated anthropometric equation and to evaluate measurement reliability. METHODS: Body composition was incorporated into newborn nursery admission procedure. Body fat percentage derived from skinfold measurements performed by clinical nurses were compared to a historical database of similar measurements performed on newborns by experienced research staff. Body Mass Index (BMI) and Ponderal Index (PI) were used as surrogates for adiposity. Comparison of correlations between groups assessed measurement reliability. P < 0.05 was considered significant. RESULTS: Nine hundred and ninety-one infants had body composition evaluated. Correlations were similar between BMI and %BF for measurements performed by research and clinical nurses (r2 = 0.82 versus r2 = 0.80; P = 0.142 for the difference between correlation coefficients) demonstrating good reliability. Similar results were found using PI (r2 = 0.58 versus r2 0.53; P = 0.105). CONCLUSIONS: Body composition can be assessed at birth using a validated anthropometric equation. Measurements performed by clinical RNs were found to be reliable, allowing for a qualitative measure of growth beyond birth weight. IMPACT: Assessment of neonatal body composition at birth can be implemented into routine clinical practice using an anthropometric equation to estimate fat free-mass, fat mass, and percentage body fat. It provides a detailed, reproducible protocol to incorporate into routine practice. Assessment of fat mass, fat-free mass, and adiposity at birth allows for a qualitative measure of intrauterine growth beyond birth weight. Routine assessment of body composition provides a foundation for longitudinal follow-up of metabolic health in infancy and childhood.
Asunto(s)
Antropometría/métodos , Composición Corporal , Niño , Femenino , Humanos , Recién Nacido , Masculino , Reproducibilidad de los ResultadosRESUMEN
AIMS/HYPOTHESIS: Obesity triggers complex inflammatory networks within the innate immune system. During pregnancy, the placenta amplifies the low-grade inflammation through activation of Toll-like receptor 4 (TLR4) signalling pathways. The purpose of this study was to investigate the impact of obesity on placental TLR4 expression and inflammatory signals. The secondary aim was to analyse the placental cell type responsible for TLR4 activation. METHODS: Thirty-nine women recruited at term-scheduled Caesarean section were grouped according to their pre-gravid BMI (<25 kg/m(2) and >30 kg/m(2)). Placenta, venous maternal and cord blood were obtained at delivery for analysis. Data were analysed with linear regression and Spearman's rank correlation coefficient analysis. RESULTS: TLR4, IL6 and IL8 expression was increased three- to ninefold (p < 0.001) in the placenta of obese vs lean women. There was a positive correlation between placental TLR4 and maternal systemic and placental IL6 and IL8 concentrations. Placental TLR4 expression was correlated with maternal pre-gravid BMI, insulin resistance index, plasma insulin and C-reactive protein (r = 0.57, 0.31, 0.35, 0.53, respectively; p < 0.001) but not with plasma glucose, maternal age, gestational age and gestational weight gain (r < 0.2; p > 0.1). TLR4 was located in both trophoblast and macrovascular endothelial cells lining fetal vasculature. Lipopolysaccharide-induced TLR4 activation was more robust in trophoblasts than in endothelial vascular cells (100-fold vs tenfold; p < 0.001). CONCLUSIONS/INTERPRETATION: Trophoblastic TLR4 is strongly implicated in the propagation of placental inflammation. Placental inflammation is related to maternal metabolic conditions such as pre-gravid BMI, whilst gestational weight gain or gestational age are not. These results implicate the pre-gravid condition as a significant contributor to metabolic inflammation in late pregnancy.
Asunto(s)
Placenta/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína C-Reactiva/metabolismo , Femenino , Edad Gestacional , Humanos , Inflamación/sangre , Inflamación/metabolismo , Insulina/sangre , Resistencia a la Insulina , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Obesidad , Embarazo , Transducción de Señal/fisiologíaRESUMEN
OBJECTIVE: The purpose of this study was to assess whether maternal factors that are associated with fetal lean and fat mass differ between sexes. STUDY DESIGN: Secondary analysis of a prospective cohort that delivered by scheduled cesarean section from 2004-2013. Maternal blood was collected before surgery for metabolic parameters. Placental weight and neonatal anthropometrics were measured within 48 hours. Anthropometric differences between sexes were assessed with the Student t test. Multiple stepwise regression analysis assessed the relationship between independent maternal variables and neonatal lean body mass (LBM), fat mass (FM), or percentage of fat as dependent variables in male and female infants combined and separately. RESULTS: We analyzed 360 women with normal glucose tolerance and a wide range of pregravid body mass index (16-64 kg/m(2)) and their offspring (male, 194; female, 166). Male infants had more FM (mean difference, 40 ± 18 g; P = .03) and LBM (mean difference, 158 ± 34 g; P < .0001) than female infants. Percentage of body fat and measured maternal variables did not differ between sexes. In both sexes, placental weight had the strongest correlation with both neonatal LBM and FM, which accounted for 20-39% of the variance. In male infants, maternal height, body mass index, and weight gain were significant predictors of both lean and fat mass. In female infants, plasma interleukin-6 and C-reactive protein, respectively, were associated independently with percentage of body fat and LBM. CONCLUSION: Our findings suggest that the body composition and inflammatory environment of the mother modulate the metabolic fitness of neonates, as predicted by fat and lean mass, in a sex-specific manner.
Asunto(s)
Composición Corporal , Estatura , Peso Corporal , Adiposidad , Adolescente , Adulto , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Masculino , Edad Materna , Persona de Mediana Edad , Estudios Prospectivos , Caracteres SexualesRESUMEN
Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.
Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/etiología , Femenino , Embarazo , Niño , Dieta , Estado Nutricional , Suplementos Dietéticos , Ácido Fólico/administración & dosificaciónRESUMEN
Long chain polyunsaturated fatty acids (LCPUFAs), such as the omega-6 (n-6) arachidonic acid (AA) and n-3 docosahexanoic acid (DHA), have a vital role in normal fetal development and placental function. Optimal supply of these LCPUFAs to the fetus is critical for improving birth outcomes and preventing programming of metabolic diseases in later life. Although not explicitly required/recommended, many pregnant women take n-3 LCPUFA supplements. Oxidative stress can cause these LCPUFAs to undergo lipid peroxidation, creating toxic compounds called lipid aldehydes. These by-products can lead to an inflammatory state and negatively impact tissue function, though little is known about their effects on the placenta. Placental exposure to two major lipid aldehydes, 4-hydroxynonenal (4-HNE) and 4-hydroxyhexenal (4-HHE), caused by peroxidation of the AA and DHA, respectively, was examined in the context of lipid metabolism. We assessed the impact of exposure to 25 µM, 50 µM and 100 µM of 4-HNE or 4-HHE on 40 lipid metabolism genes in full-term human placenta. 4-HNE increased gene expression associated with lipogenesis and lipid uptake (ACC, FASN, ACAT1, FATP4), and 4-HHE decreased gene expression associated with lipogenesis and lipid uptake (SREBP1, SREBP2, LDLR, SCD1, MFSD2a). These results demonstrate that these lipid aldehydes differentially affect expression of placental FA metabolism genes in the human placenta and may have implications for the impact of LCPUFA supplementation in environments of oxidative stress.
RESUMEN
INTRODUCTION: Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS: We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS: Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION: Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.
Asunto(s)
Obesidad Materna , Placenta , Humanos , Embarazo , Femenino , Masculino , Placenta/metabolismo , Obesidad Materna/complicaciones , Obesidad Materna/metabolismo , Sangre Fetal/metabolismo , Macrófagos/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , LípidosRESUMEN
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.
Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo L , Placenta , Animales , Femenino , Humanos , Ratones , Embarazo , Línea Celular Tumoral , Embrión de Mamíferos , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismoRESUMEN
Dietary fish is a rich source of omega-3 (n-3) fatty acids, and as such, is believed to have played an important role in the evolution of the human brain and its advanced cognitive function. The long chain polyunsaturated fatty acids, particularly the n-3 docosahexanoic acid (DHA), are critical for proper neurological development and function. Both low plasma DHA and obesity in pregnancy are associated with neurodevelopmental disorders such as attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in childhood, and n-3 supplementation has been shown to improve symptoms, as reviewed herein. The mechanisms underlying the connection between maternal obesity, n-3 fatty acid levels and offspring's neurological outcomes are poorly understood, but we review the evidence for a mediating role of the placenta in this relationship. Despite promising data that n-3 fatty acid supplementation mitigates the effect of maternal obesity on placental lipid metabolism, few clinical trials or animal studies have considered the neurological outcomes of offspring of mothers with obesity supplemented with n-3 FA in pregnancy.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Obesidad Materna/metabolismo , Placenta/metabolismo , Animales , Trastorno por Déficit de Atención con Hiperactividad/dietoterapia , Trastorno por Déficit de Atención con Hiperactividad/prevención & control , Trastorno del Espectro Autista/dietoterapia , Trastorno del Espectro Autista/prevención & control , Suplementos Dietéticos , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Trastornos del Neurodesarrollo/dietoterapia , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/prevención & control , Obesidad Materna/complicaciones , Obesidad Materna/dietoterapia , EmbarazoRESUMEN
Non-Hispanic Black (NHB) people have a 2.5-fold higher risk of maternal mortality when compared to non-Hispanic White (NHW) people. Neonates of NHB people are more likely to be born preterm and small for gestational age, which may be driven by structural racism. The placenta is very sensitive to the maternal environment and may play a critical role in the translation of environmental stressors to pregnancy outcomes. Our aim was to assess the placental miRNA expression profile in both NHB and NHW people and the association between differentially expressed miRNAs and pregnancy outcomes. Placentas were collected from 50 NHB and 74 NHW people with a normal singleton pregnancy undergoing elective cesarean section at term prior to the onset of labor. Placental miRNA expression was measured via whole-genome small RNA-sequencing in a subset of 77 placentas. Fifteen miRNAs were more highly expressed in the placentas of NHB people. Several of these miRNAs were associated with cellular stress response pathways, suggesting that they may be responding to environmental stressors. Placental miR-192-5p expression was lower among NHB people and was positively associated with neonatal adiposity, suggesting it may be sensitive to structural racism with potential impacts on fetal growth.
Asunto(s)
Población Negra , MicroARNs , Población Negra/genética , Cesárea , Femenino , Humanos , Recién Nacido , MicroARNs/genética , Placenta/metabolismo , Embarazo , Resultado del EmbarazoRESUMEN
Placentas of obese women have low mitochondrial ß-oxidation of fatty acids (FA) and accumulate lipids in late pregnancy. This creates a lipotoxic environment, impairing placental efficiency. We hypothesized that placental FA metabolism is impaired in women with obesity from early pregnancy. We assessed expression of key regulators of FA metabolism in first trimester placentas of lean and obese women. Maternal fasting triglyceride and insulin levels were measured in plasma collected at the time of procedure. Expression of genes associated with FA oxidation (FAO; ACOX1, CPT2, AMPKα), FA uptake (LPL, LIPG, MFSD2A), FA synthesis (ACACA) and storage (PLIN2) were significantly reduced in placentas of obese compared to lean women. This effect was exacerbated in placentas of male fetuses. Placental ACOX1 protein was higher in women with obesity and correlated with maternal circulating triglycerides. The PPARα pathway was enriched for placental genes impacted by obesity, and PPARα antagonism significantly reduced 3H-palmitate oxidation in 1st trimester placental explants. These results demonstrate that obesity and hyperlipidemia impact placental FA metabolism as early as 7 weeks of pregnancy.
Asunto(s)
Metabolismo de los Lípidos , Placenta , Embarazo , Femenino , Masculino , Humanos , Placenta/metabolismo , Metabolismo de los Lípidos/genética , Primer Trimestre del Embarazo , PPAR alfa/genética , PPAR alfa/metabolismo , Obesidad/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismoRESUMEN
CONTEXT: Efforts to decrease the risk of developing metabolic complications of pregnancy such as gestational diabetes (GDM) through lifestyle intervention (decreasing excessive gestational weight gain (GWG)) during pregnancy have met with limited success. OBJECTIVE: The purpose of this study was to determine the relationship between the longitudinal changes in weight/body composition and insulin sensitivity and response in women with normal glucose tolerance (NGT) and those who developed GDM. DESIGN: We conducted a secondary analysis of a prospective cohort developed before conception and again at 34 to 36 weeks gestation. A total of 29 NGT and 17 GDM women were evaluated for longitudinal changes in insulin sensitivity/response using the hyperinsulinemic-euglycemic clamp and an IV-glucose tolerance test. Body composition was estimated using hydrodensitometry. Both absolute change (Δ) and relative change (%Δ) between these 2 time points were calculated. We performed simple and multiple linear regression analysis to assess the relationship between GWG and measures of glucose metabolism, ie, insulin sensitivity and response. RESULTS: Based on the primary study design there was no significant difference in clinical characteristics between women with NGT and those developing GDM. Prior to pregnancy, women who developed GDM had lower insulin sensitivity levels (Pâ =â 0.01) compared with NGT women. Absolute change and %Δ in insulin sensitivity/insulin response and body weight/body composition were not significantly different between NGT and GDM women. Changes in body weight contributed to only 9% of the Δ in insulin sensitivity both in women developing GDM and NGT women. CONCLUSIONS: These data suggest that other factors-such as maternal pre-pregnancy insulin sensitivity and placental derived factors affecting insulin sensitivity-rather than maternal GWG account for the changes in glucose metabolism during human pregnancy.
RESUMEN
PURPOSE: Maternal nutrition is a key modifier of fetal growth and development. However, many maternal diets in the United States do not meet nutritional recommendations. Dietary supplementation is therefore necessary to meet nutritional goals. The effects of many supplements on placental development and function are poorly understood. In this review, we address the therapeutic potential of maternal dietary supplementation on placental development and function in both healthy and complicated pregnancies. METHODS: This is a narrative review of original research articles published between February 1970 and July 2020 on dietary supplements consumed during pregnancy and placental outcomes (including nutrient uptake, metabolism and delivery, as well as growth and efficiency). Impacts of placental changes on fetal outcomes were also reviewed. Both human and animal studies were included. FINDINGS: We found evidence of a potential therapeutic benefit of several supplements on maternal and fetal outcomes via their placental impacts. Our review supports a role for probiotics as a placental therapeutic, with effects that include improved inflammation and lipid metabolism, which may prevent preterm birth and poor placental efficiency. Supplementation with omega-3 fatty acids (as found in fish oil) during pregnancy tempers the negative effects of maternal obesity but may have little placental impact in healthy lean women. The beneficial effects of choline supplementation on maternal health and fetal growth are largely attributable to its placental impacts. l-arginine supplementation has a potent provascularization effect on the placenta, which may underlie its fetal growth-promoting properties. IMPLICATIONS: The placenta is exquisitely sensitive to dietary supplements. Pregnant women should consult their health care practitioner before continuing or initiating use of a dietary supplement. Because little is known about impacts of many supplements on placental and long-term offspring health, more research is required before robust clinical recommendations can be made.
Asunto(s)
Suplementos Dietéticos , Desarrollo Fetal/efectos de los fármacos , Micronutrientes/uso terapéutico , Placenta/efectos de los fármacos , Animales , Arginina/farmacología , Arginina/uso terapéutico , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Micronutrientes/farmacología , Placenta/fisiología , Embarazo , Complicaciones del Embarazo , Nacimiento Prematuro/prevención & control , Atención PrenatalRESUMEN
BACKGROUND: Little is known about how maternal obesity impacts breast milk (BM) composition and how BM composition may impact growth. We sought to determine the role of maternal body mass index (BMI) on BM inflammatory and oxidative stress markers and to delineate the role of these BM markers on infant growth. METHODS: This was a secondary analysis of 40 mother-infant dyads. We first assessed the association between maternal BMI and BM marker (omega-6:omega-3 polyunsaturated fatty acid ratio (n-6:n-3 PUFA), leptin, interleukin (IL)-8, IL-6, IL-1ß and malondialdehyde (MDA)) concentration at one (V1) and four (V4) months postpartum. We then examined the association between BM markers on infant growth trajectory from birth to seven months. RESULTS: Higher maternal BMI was associated with higher BM n-6:n-3 PUFA (V1 ß = 0.12, 95% CI 0.01, 0.2; V4 ß = 0.13, 95% CI 0.01, 0.3) and leptin (V1 ß = 107, 95% CI 29, 184; V4 ß = 254, 95% CI 105, 403) concentrations. Infants exposed to high BM n-6:n-3 PUFA had higher BMI z-scores over time (p = 0.01). Higher BM leptin was associated with lower infant percent fat mass at V4 (ß = -9, 95% CI -17, -0.6). Infants exposed to high BM IL-8, IL-6, or IL-1ß had higher weight z-scores over time (IL-8 p < 0.001; IL-6 p < 0.001; IL-1ß p = 0.02). There was no association between BM MDA and maternal BMI or infant growth. CONCLUSIONS: Higher maternal BMI is associated with higher BM n-6:n-3 PUFA and leptin concentrations. In addition, higher BM n-6:n-3 PUFA and inflammatory cytokines were associated with accelerated weight gain in infancy.
Asunto(s)
Leche Humana , Obesidad Materna , Índice de Masa Corporal , Femenino , Humanos , Lactante , Inflamación , Sobrepeso , EmbarazoRESUMEN
CONTEXT: An increase in maternal insulin resistance (IR) during pregnancy is essential for normal fetal growth. The mechanisms underlying this adaptation are poorly understood. Placental factors are believed to instigate and maintain these changes, as IR decreases shortly after delivery. Methylation of placental gene loci that are common targets for miRNAs are associated with maternal IR. OBJECTIVE: We hypothesized that placental miRNAs targeting methylated loci are associated with maternal IR during late pregnancy. METHODS: We collected placentas from 132 elective cesarean sections and fasting blood samples at delivery to estimate maternal homeostasis model assessment of insulin resistance (HOMA-IR). Placental miRNA expression was measured via whole genome small-RNA sequencing in a subset of 40 placentas selected by maternal pre-gravid body mass index (BMI) and neonatal adiposity. Five miRNAs correlated with maternal HOMA-IR and previously identified as targeting methylated genes were selected for validation in all 132 placenta samples via RT-qPCR. Multiple regression adjusted for relevant clinical variables. RESULTS: Median maternal age was 27.5 years, with median pre-pregnancy BMI of 24.7 kg/m2, and median HOMA-IR of 2.9. Among the 5 selected miRNA, maternal HOMA-IR correlated with the placental expression of miRNA-371b-3p (râ =â 0.25; Pâ =â 0.008) and miRNA-3940-3p (râ =â 0.32; Pâ =â 0.0004) across the 132 individuals. After adjustment for confounding variables, placental miRNA-3940-3p expression remained significantly associated with HOMA-IR (ßâ =â 0.16; Pâ =â 0.03). CONCLUSION: Placental miRNA-3940-3p was associated with maternal IR at delivery. This placental miRNA may have an autocrine or paracrine effect-regulating placental genes involved in modulating maternal IR.
Asunto(s)
Biomarcadores/metabolismo , Índice de Masa Corporal , Redes Reguladoras de Genes , Resistencia a la Insulina , MicroARNs/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Adulto , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Embarazo , PronósticoRESUMEN
OBJECTIVE: Fetal fatty acid (FA) delivery is ultimately controlled by placental transport. Focus has been the maternal-placental interface, but regulation at the feto-placental interface is unknown. METHODS: Placental macrovascular endothelial cells (EC) (n = 4/group) and trophoblasts (TB) (n = 5/group) were isolated from lean (pregravid BMI <25 kg/m2) and obese (body mass index (BMI) > 30) women. Fatty acid transporters FAT/CD36, FABPpm, FATP4, FABP 3, 4 and 5, PLIN2 and PPARα, δ, γ expression, was measured in EC and TB. Transporter response to 24 h palmitate (PA) was assessed. RESULTS: mRNA expression of FABP3, 4, 5 and PPARγ was 2- to 3-fold reduced in EC of obese versus lean women (p < .03), but not in TB. Protein level of FABPpm was 20% lower in obese (p < .05). Palmitate (PA) up-regulated CD36, FABP3, FABP4, and PLIN2 gene expression by 3- to 4-fold in lean but not obese EC (p < .05), while PA increased FABP4 and PLIN2 in lean and obese TB, and FABP5 in lean (p < .05) EC. PA exposure up-regulated peroxisome proliferator activated receptors (PPARs) 2-fold in lean and obese EC (p < .05), but not in TB. CONCLUSIONS: In obese women, FA transporter expression is lower in placental EC, but not TB, and less sensitive to saturated FA, compared to lean women. FA transport may be regulated at the feto-placental interface.
Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Obesidad/metabolismo , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , Estudios de Casos y Controles , Cesárea , Células Endoteliales/metabolismo , Femenino , Humanos , Embarazo , Trofoblastos/metabolismoRESUMEN
OBJECTIVE: Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor whose phosphorylation increases energy production. We sought to evaluate the placenta-specific effect of AMPK activation on the handling of nutrients required for fetal development. METHODS: Explants were isolated from term placenta of 29 women (pregravid body mass index: 29.1 ± 9.9 kg/m2) and incubated for 24 hours with 0 to 100 µmol/L resveratrol or 0 to 1 mmol/L of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR). Following treatment, uptake and metabolism of radiolabeled fatty acids and glucose were measured. Phosphorylation of AMPK was measured by Western blotting. Adenosine diphosphate (ATP) production was assessed using the mitochondrial ToxGlo assay kit. P < .05 was considered statistically significant. RESULTS: Resveratrol and AICAR increased AMPK phosphorylation in human placental explants. Exposure to resveratrol decreased the uptake of polyunsaturated fatty acids, arachidonic acid, and docosahexaenoic acid at 100 µmol/L ( P < .0001). Fatty acid oxidation was decreased by 100 µmol/L ( P < .05) resveratrol, while esterification was unchanged. Resveratrol decreased glucose uptake at the 50 and 100 µmol/L doses ( P < .05). Glycolysis was not significantly affected. AICAR had similar effects, decreasing fatty acid uptake and glycolysis ( P < .05). Production of ATP declined at doses found to decrease nutrient metabolism ( P < .05). CONCLUSIONS: Activation of AMPK in the human placenta leads to global downregulation of metabolism, with mitotoxicity induced at the doses of resveratrol and AICAR used to activate AMPK. Although activation of this pathway has positive metabolic effects on other tissues, in the placenta there is potential for harm, as inadequate placental delivery of critical nutrients may compromise fetal development.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Placenta/metabolismo , Adulto , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/análogos & derivados , Inhibidores Enzimáticos/administración & dosificación , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Fosforilación , Embarazo , Resveratrol/administración & dosificación , Ribonucleótidos/administración & dosificación , Trofoblastos/metabolismoRESUMEN
Placental fatty acid oxidation (FAO) is impaired and lipid storage is increased in pregnancy states associated with chronic oxidative stress. The effect of acute oxidative stress, as seen in pregnancies complicated with asthma, on placental lipid metabolism is unknown. We hypothesized that induction of acute oxidative stress would decrease FAO and increase esterification. We assessed [3H]-palmitate oxidation and esterification in term placental explants from lean women after exposure to hydrogen peroxide (H2O2) for 4 hours. Fatty acid oxidation decreased 16% and 24% in placental explants exposed to 200 (P = .02) and 400 µM H2O2 (P = .01), respectively. Esterification was not altered with H2O2 exposure. Neither messenger RNA nor protein expression of key genes involved in FAO (eg, peroxisome proliferator-activated receptor α, carnitine palmitoyl transferase 1b) were altered. Adenosine triphosphate (ATP) levels decreased with induction of oxidative stress, without increasing cytotoxicity. Acute oxidative stress decreased FAO and ATP production in the term placenta without altering fatty acid esterification. As decreases in placental FAO and ATP production are associated with impaired fetal growth, pregnancies exposed to acute oxidative stress may be at risk for fetal growth restriction.