Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 30(6): 728-738, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38485192

RESUMEN

Transcriptomics analyses play pivotal roles in understanding the complex regulatory networks that govern cellular processes. The abundance of rRNAs, which account for 80%-90% of total RNA in eukaryotes, limits the detection and investigation of other transcripts. While mRNAs and long noncoding RNAs have poly(A) tails that are often used for positive selection, investigations of poly(A)- RNAs, such as circular RNAs, histone mRNAs, and small RNAs, typically require the removal of the abundant rRNAs for enrichment. Current approaches to deplete rRNAs for downstream molecular biology investigations are hampered by restrictive RNA input masses and high costs. To address these challenges, we developed rRNA Removal by RNaseH (rRRR), a method to efficiently deplete rRNAs from a wide range of human, mouse, and rat RNA inputs and of varying qualities at a cost 10- to 20-fold cheaper than other approaches. We used probe-based hybridization and enzymatic digestion to selectively target and remove rRNA molecules while preserving the integrity of non-rRNA transcripts. Comparison of rRRR to two commercially available approaches showed similar rRNA depletion efficiencies and comparable off-target effects. Our developed method provides researchers with a valuable tool for investigating gene expression and regulatory mechanisms across a wide range of biological systems at an affordable price that increases the accessibility for researchers to enter the field, ultimately advancing our understanding of cellular processes.


Asunto(s)
ARN Ribosómico , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Animales , Humanos , Ratones , Ratas , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Methods ; 196: 85-103, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33662562

RESUMEN

Circular RNAs (circRNAs) are a novel class of RNAs distinguished by their single-stranded, covalently-closed topology. Although initially perceived as rare byproducts of aberrant splicing, circRNAs are now recognized as ubiquitously expressed and functionally significant. These discoveries have led to a growing need for ways to model circRNAs in living cells to advance our understanding of their biogenesis, regulation, and function, and to adopt them as new technologies for application within research and medicine. In this review, we provide an updated summary of approaches used to produce circRNAs in vitro and in vivo, the latter of which has grown considerably in recent years. Given increased interest in the unique functions carried out by individual circRNAs, we further dedicate a section on how to customize synthesized circRNAs for specific biological roles. We focus on the most common applications, including designing circRNAs for protein delivery, to target miRNAs and proteins, to act as fluorescent reporters, and to modulate cellular immunity.


Asunto(s)
MicroARNs , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Proteínas/metabolismo , Empalme del ARN/genética
3.
Neuro Oncol ; 20(2): 225-235, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29016938

RESUMEN

Background: Combined immunotherapy approaches are promising cancer treatments. We evaluated anti-programmed cell death protein 1 (PD-1) treatment combined with gene-mediated cytotoxic immunotherapy (GMCI) performed by intratumoral injection of a prodrug metabolizing nonreplicating adenovirus (AdV-tk), providing in situ chemotherapy and immune stimulation. Methods: The effects of GMCI on PD ligand 1 (PD-L1) expression in glioblastoma were investigated in vitro and in vivo. The efficacy of the combination was investigated in 2 syngeneic mouse glioblastoma models (GL261 and CT-2A). Immune infiltrates were analyzed by flow cytometry. Results: GMCI upregulated PD-L1 expression in vitro and in vivo. Both GMCI and anti-PD-1 increased intratumoral T-cell infiltration. A higher percentage of long-term survivors was observed in mice treated with combined GMCI/anti-PD-1 relative to single treatments. Long-term survivors were protected from tumor rechallenge, demonstrating durable memory antitumor immunity. GMCI led to elevated interferon gamma positive T cells and a lower proportion of exhausted double positive PD1+TIM+CD8+ T cells. GMCI also increased PD-L1 levels on tumor cells and infiltrating macrophages/microglia. Our data suggest that anti-PD-1 treatment improves the effectiveness of GMCI by overcoming interferon-induced PD-L1-mediated inhibitory signals, and GMCI improves anti-PD-1 efficacy by increasing tumor-infiltrating T-cell activation. Conclusions: Our data show that the GMCI/anti-PD-1 combination is well tolerated and effective in glioblastoma mouse models. These results support evaluation of this combination in glioblastoma patients.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Encefálicas , Terapia Combinada , Glioblastoma , Inmunoterapia , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Terapia Combinada/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Inmunoterapia/métodos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA