RESUMEN
Glutaminase converts glutamine into glutamic acid and has two isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2). GLS1 is overexpressed in several tumors, and research to develop glutaminase inhibitors as antitumor drugs is currently underway. The present study examined candidate GLS1 inhibitors using in silico screening and attempted to synthesize novel GLS1 inhibitors and assess their GLS1 inhibitory activities in a mouse kidney extract and against recombinant mouse and human GLS1. Novel compounds were synthesized using compound C as the lead compound, and their GLS1 inhibitory activities were evaluated using the mouse kidney extract. Among the derivatives tested, the trans-4-hydroxycyclohexylamide derivative 2j exhibited the strongest inhibitory activity. We also assessed the GLS1 inhibitory activities of the derivatives 2j, 5i, and 8a against recombinant mouse and human GLS1. The derivatives 5i and 8a significantly decreased the production of glutamic acid at 10 mM. In conclusion, we herein identified two compounds that exhibited GLS1 inhibitory activities with equal potencies as known GLS1 inhibitors. These results will contribute to the development of effective novel GLS1 inhibitors with more potent inhibitory activity.
Asunto(s)
Ácido Glutámico , Glutaminasa , Humanos , Ratones , Animales , Línea Celular Tumoral , Glutamina , Relación Estructura-ActividadRESUMEN
GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.
Asunto(s)
Antineoplásicos , Tiadiazoles , Antineoplásicos/farmacología , Glutaminasa/antagonistas & inhibidores , Tiadiazoles/farmacología , Tiadiazoles/químicaRESUMEN
Destabilization of human transthyretin leads to its aggregation into amyloid fibrils, which causes a rare, progressive and fatal systemic disorder called ATTR amyloidosis. By contrast, murine transthyretin is known to be very stable and therefore does not aggregate into amyloid fibrils in vivo or in vitro. We examined the hydrophobic residues responsible for the high-stability and low-aggregation properties of murine transthyretin using site-directed mutagenesis. Urea-induced unfolding and thioflavin T fluorescence aggregation assay revealed that Leu73 of murine transthyretin largely contributes to its high stability and low aggregation properties: the I73L mutation stabilized human transthyretin, while the L73I mutation destabilized murine transthyretin. In addition, the I26V/I73L mutation stabilized the amyloidogenic V30M mutant of human transthyretin to the same degree as the suppressor mutation T119M, which protects transthyretin against amyloid fibril aggregation. The I73L mutation resulted in no significant differences in the overall structure of the transthyretin tetramer or the contacts of side-chains in the hydrophobic core of the monomer. We also found that Leu73 of murine transthyretin is conserved in many mammals, while Ile73 of human transthyretin is conserved in monkeys and cats. These studies will provide new insights into the stability and aggregation properties of transthyretin from various mammals.
Asunto(s)
Amiloidosis , Prealbúmina , Amiloide/química , Amiloide/genética , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mamíferos , Ratones , Mutación , Prealbúmina/genética , UreaRESUMEN
Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.
Asunto(s)
Proteínas Arqueales/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Sulfolobus/citología , Proteínas Arqueales/análisis , Proteínas Arqueales/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/análisis , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Regulación de la Expresión Génica Arqueal , Liposomas/metabolismo , Sistemas de Lectura Abierta , Estructura Terciaria de Proteína , Transcripción GenéticaRESUMEN
Most of the endogenous free d-serine (about 90%) in the brain is produced by serine racemase (SR). d-Serine in the brain is involved in neurodegenerative disorders and epileptic states as an endogenous co-agonist of the NMDA-type glutamate receptor. Thus, SR inhibitors are expected to be novel therapeutic candidates for the treatment of these disorders. In this study, we solved the crystal structure of wild-type SR, and tried to identify a new inhibitor of SR by in silico screening using the structural information. As a result, we identified two hit compounds by their in vitro evaluations using wild-type SR. Based on the structure of the more potent hit compound 1, we synthesized 15 derivatives and evaluated their inhibitory activities against wild-type SR. Among them, the compound 9C showed relatively high inhibitory potency for wild-type SR. Compound 9C was a more potent inhibitor than compound 24, which was synthesized by our group based upon the structural information of the mutant-type SR.
Asunto(s)
Amidas/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Racemasas y Epimerasas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Racemasas y Epimerasas/metabolismo , Relación Estructura-ActividadRESUMEN
Serine racemase (SRR) is an enzyme that produces d-serine from l-serine. d-Serine acts as an endogenous coagonist of NMDA-type glutamate receptors (NMDARs), which regulate many physiological functions. Over-activation of NMDARs induces excitotoxicity, which is observed in many neurodegenerative disorders and epilepsy states. In our previous works on the generation of SRR gene knockout (Srr-KO) mice and its protective effects against NMDA- and Aß peptide-induced neurodegeneration, we hypothesized that the regulation of NMDARs' over-activation by inhibition of SRR activity is one such therapeutic strategy to combat these disease states. In the previous study, we performed in silico screening to identify four compounds with inhibitory activities against recombinant SRR. Here, we synthesized 21 derivatives of candidate 1, one of four hit compounds, and performed screening by in vitro evaluations. The derivative 13J showed a significantly lower IC50 value in vitro, and suppressed neuronal over-activation in vivo.
Asunto(s)
Acrilamidas/química , Inhibidores Enzimáticos/química , Sustancias Protectoras/química , Racemasas y Epimerasas/antagonistas & inhibidores , Tiourea/análogos & derivados , Acrilamidas/administración & dosificación , Acrilamidas/síntesis química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Enlace de Hidrógeno , Ratones , Ratones Noqueados , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Imagen Óptica , Sustancias Protectoras/síntesis química , Sustancias Protectoras/farmacología , Estructura Terciaria de Proteína , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Tiourea/administración & dosificación , Tiourea/síntesis química , Tiourea/químicaRESUMEN
The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.
Asunto(s)
Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Fosfolipasa D/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Pliegue de ProteínaRESUMEN
D-Serine is a coagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptor and its biosynthesis is catalyzed by serine racemase (SR). The overactivation of the NMDA receptor has been implicated in the development of neurodegenerative diseases, strokes, and epileptic seizures, thus, the inhibitors of SR have potential against these pathological states. Here, we have developed novel inhibitors of SR by in silico screening and in vitro enzyme assay. The newly developed inhibitors have lower IC50 value comparing with that of malonate, one of the standard SR inhibitor. The structural features of novel inhibitors suggest the importance of central amide structure having a phenoxy substituent in their structure for the SR inhibitory activity. The present findings suggest the importance and rational development of new drugs for diseases of NMDAR overactivation.
Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Racemasas y Epimerasas/antagonistas & inhibidores , Amidas/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Racemasas y Epimerasas/metabolismo , Relación Estructura-ActividadRESUMEN
Amyloid fibrils of transthyretin (TTR) consist of full-length TTR and C-terminal fragments starting near residue 50. However, the molecular mechanism underlying the production of the C-terminal fragment remains unclear. Here, we investigated trypsin-induced aggregation and urea-induced unfolding of TTR variants associated with hereditary amyloidosis. Trypsin strongly induced aggregation of variants V30G and V30A, in each of which Val30 in the hydrophobic core of the monomer was mutated to less-bulky amino acids. Variants V30L and V30M, in each of which Val30 was mutated to bulky amino acids, also exhibited trypsin-induced aggregation. On the other hand, pathogenic variant I68L as well as the nonpathogenic V30I did not exhibit trypsin-induced aggregation. The V30G variant was extremely unstable compared with the other variants. The V30G mutation caused the formation of a cavity and the rearrangement of Leu55 in the hydrophobic core of the monomer. These results suggest that highly destabilized transthyretin variants are more susceptible to trypsin digestion.
Asunto(s)
Amiloidosis Familiar , Valina , Humanos , Tripsina/genética , Tripsina/metabolismo , Valina/genética , Prealbúmina/química , Amiloide/química , Amiloidosis Familiar/genéticaRESUMEN
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is activated by binding to DNA. Activated cGAS produces 2'3'-cGAMP, which subsequently binds to the adaptor protein STING (stimulator of interferon genes). This interaction triggers the cGAS/STING signaling pathway, leading to the production of type I interferons. Three types of DNA, namely double-stranded DNA longer than 40 base pairs, a 70-nucleotide single-stranded HIV-1 DNA known as SL2, and Y-form DNA with unpaired guanosine trimers (G3 Y-form DNA), induce interferon production by activating cGAS/STING signaling. However, the extent of cGAS activation by each specific DNA type remains unclear. The comparison of cGAS stimulation by various DNAs is crucial for understanding the mechanisms underlying cGAS-mediated type I interferon production in the innate immune response. Here, we revealed that cGAS produces 2'3'-cGAMP at a significantly lower rate in the presence of single-stranded SL2 DNA than in the presence of double-stranded DNA or G3 Y-form DNA. Furthermore, the guanine-to-cytosine mutations and the deletion of unpaired guanosine trimers significantly reduced the 2'3'-cGAMP production rate and the binding of cGAS to Y-form DNA. These studies will provide new insights into the cGAS-mediated DNA-sensing in immune response.
Asunto(s)
VIH-1 , Interferón Tipo I , VIH-1/genética , ADN de Cadena Simple/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN/genética , ADN/metabolismo , Inmunidad Innata , Interferón Tipo I/genética , GuanosinaRESUMEN
Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB-FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB-FKBP remains unclear. Here, we report that FRB-FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB-FKBP oligomerization system in diverse biological events.
Asunto(s)
Multimerización de Proteína , Proteínas Recombinantes de Fusión , Sirolimus , Proteínas de Unión a Tacrolimus , Sirolimus/química , Sirolimus/farmacología , Sirolimus/metabolismo , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/genética , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Humanos , Cristalografía por Rayos X , Modelos Moleculares , Dominios Proteicos , Unión ProteicaRESUMEN
The AAA+ ATPases are essential for various activities such as membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA ATPase Vps4, which is central to endosomal traffic to lysosomes, retroviral budding and cytokinesis, dissociates ESCRT complexes (the endosomal sorting complexes required for transport) from membranes. Here we show that, of the six ESCRT--related subunits in yeast, only Vps2 and Did2 bind the MIT (microtubule interacting and transport) domain of Vps4, and that the carboxy-terminal 30 residues of the subunits are both necessary and sufficient for interaction. We determined the crystal structure of the Vps2 C terminus in a complex with the Vps4 MIT domain, explaining the basis for selective ESCRT-III recognition. MIT helices alpha2 and alpha3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and mutations within this motif cause sorting defects in yeast. Our crystal structure of the amino-terminal domain of an archaeal AAA ATPase of unknown function shows that it is closely related to the MIT domain of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like protein even though these organisms have no endomembrane system, suggesting that the Vps4/ESCRT-III partnership is a relic of a function that pre-dates the divergence of eukaryotes and Archaea.
Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Vacuolas/metabolismoRESUMEN
An acidic environment in bone is essential for bone metabolism and the production of decarboxylated osteocalcin, which functions as a regulatory hormone of glucose metabolism. Here, we describe the high-resolution X-ray crystal structure of decarboxylated osteocalcin under acidic conditions. Decarboxylated osteocalcin at pH 2.0 retains the α-helix structure of native osteocalcin with three γ-carboxyglutamic acid residues at neutral pH. This implies that decarboxylated osteocalcin is stable under an acidic environment in bone. In addition, site-directed mutagenesis revealed that Glu17 and Glu21 are important for the adiponectin-inducing activity of decarboxylated osteocalcin. These findings suggest that the receptor of decarboxylated osteocalcin responds to the negative charge in helix 1 of osteocalcin.
Asunto(s)
Adiponectina , Huesos , Osteocalcina/metabolismo , Huesos/metabolismo , Ácido 1-CarboxiglutámicoRESUMEN
Asn-glycosylation is widespread not only in eukaryotes but also in archaea and some eubacteria. Oligosaccharyltransferase (OST) catalyzes the co-translational transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. Here, we report that a thermophilic archaeon, Pyrococcus furiosus OST is composed of the STT3 protein alone, and catalyzes the transfer of a heptasaccharide, containing one hexouronate and two pentose residues, onto peptides in an Asn-X-Thr/Ser-motif-dependent manner. We also determined the 2.7-A resolution crystal structure of the C-terminal soluble domain of Pyrococcus STT3. The structure-based multiple sequence alignment revealed a new motif, DxxK, which is adjacent to the well-conserved WWDYG motif in the tertiary structure. The mutagenesis of the DK motif residues in yeast STT3 revealed the essential role of the motif in the catalytic activity. The function of this motif may be related to the binding of the pyrophosphate group of lipid-linked oligosaccharide donors through a transiently bound cation. Our structure provides the first structural insights into the formation of the oligosaccharide-asparagine bond.
Asunto(s)
Dominio Catalítico/fisiología , Hexosiltransferasas/química , Proteínas de la Membrana/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Carbohidratos , Dominio Catalítico/genética , Cristalografía por Rayos X , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/genética , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genéticaRESUMEN
The structure determination of the PX (phox homology) domain of the Saccharomyces cerevisiae Vps17p protein presented a challenging case for molecular replacement because it has noncrystallographic symmetry close to a crystallographic axis. The combination of diffraction-quality crystals grown under microgravity on the International Space Station and a highly accurate template structure predicted by AlphaFold2 provided the key to successful crystal structure determination. Although the structure of the Vps17p PX domain is seen in many PX domains, no basic residues are found around the canonical phosphatidylinositol phosphate (PtdIns-P) binding site, suggesting an inability to bind PtdIns-P molecules.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sitios de Unión , Cristalografía por Rayos X , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.
Asunto(s)
Ciona intestinalis , Ciona , Animales , Ciona/metabolismo , Ciona intestinalis/metabolismo , Epidermis/metabolismo , Mamíferos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismoRESUMEN
Most mitochondrial proteins are synthesized in the cytosol and imported into mitochondria. The N-terminal presequences of mitochondrial-precursor proteins contain a diverse consensus motif (phi chi chi phi phi, phi is hydrophobic and chi is any amino acid), which is recognized by the Tom20 protein on the mitochondrial surface. To reveal the structural basis of the broad selectivity of Tom20, the Tom20-presequence complex was crystallized. Tethering a presequence peptide to Tom20 through a disulfide bond was essential for crystallization. Unexpectedly, the two crystals with different linker designs provided unique relative orientations of the presequence with respect to Tom20, and neither configuration could fully account for the hydrophobic preference at the three hydrophobic positions of the consensus motif. We propose the existence of a dynamic equilibrium in solution among multiple states including the two bound states. In accordance, NMR 15N relaxation analyses suggested motion on a sub-millisecond timescale at the Tom20-presequence interface. We suggest that the dynamic, multiple-mode interaction is the molecular mechanism facilitating the broadly selective specificity of the Tom20 receptor toward diverse mitochondrial presequences.
Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Péptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Aldehído Deshidrogenasa/química , Cristalización , Cristalografía , Espectroscopía de Resonancia Magnética , Proteínas de Transporte de Membrana/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Biblioteca de Péptidos , Péptidos/química , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/químicaRESUMEN
Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Encefalitis/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Encéfalo , Proteínas de Unión al ADN/genética , Encefalitis/inmunología , Femenino , VIH , Humanos , Inmunidad Innata , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas , Nucleotidiltransferasas/genética , Tamoxifeno/farmacologíaRESUMEN
The AAA (ATPase associated with various cellular activities) proteins participate in membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA Vps (vacuolar protein sorting) 4 is central to traffic to lysosomes, retroviral budding and mammalian cell division. It dissociates ESCRTs (endosomal sorting complexes required for transport) from endosomal membranes, enabling their recycling to the cytosol, and plays a role in fission of intraluminal vesicles within MVBs (multivesicular bodies). The mechanism of Vps4-catalysed disassembly of ESCRT networks is unknown; however, it requires interaction between Vps4 and ESCRT-III subunits. The 30 C-terminal residues of Vps2 and Vps46 (Did2) subunits are both necessary and sufficient for interaction with the Vps4 N-terminal MIT (microtubule-interacting and transport) domain, and the crystal structure of the Vps2 C-terminus in a complex with the Vps4 MIT domain shows that MIT helices alpha2 and alpha3 recognize a (D/E)XXLXXRLXXL(K/R) MIM (MIT-interacting motif). These Vps2-MIT interactions are essential for vacuolar sorting and for Vps4-catalysed disassembly of ESCRT-III networks in vitro. Electron microscopy of ESCRT-III filaments assembled in vitro has enabled us to identify surfaces of the Vps24 subunit that are critical for protein sorting in vivo. The ESCRT-III-Vps4 interaction predates the divergence of Archaea and Eukarya. The Crenarchaea have three classes of ESCRT-III-like subunits, and one of these subunits interacts with an archaeal Vps4-like protein in a manner closely related to the human Vps4-human ESCRT-III subunit Vps20 interaction. This archaeal Vps4-ESCRT-III interaction appears to have a fundamental role in cell division in the Crenarchaea.