Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Parasitol ; 255: 108639, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918502

RESUMEN

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.


Asunto(s)
Proteínas de Ciclo Celular , Leishmania major , Proteínas de Ciclo Celular/genética , Leishmania major/metabolismo , Ciclo Celular , Daño del ADN
2.
Nucleic Acids Res ; 46(22): 11835-11846, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30380080

RESUMEN

Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras del ADN/genética , Endonucleasas/genética , Genoma de Protozoos , Leishmania major/genética , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Biología Computacional/métodos , Medios de Cultivo/química , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Endonucleasas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica , Ingeniería Genética , Variación Genética , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Leishmania major/metabolismo , Secuenciación Completa del Genoma
3.
Mol Microbiol ; 101(6): 1054-68, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27301589

RESUMEN

The Rad9-Rad1-Hus1 (9-1-1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA-related trimer is loaded onto RPA-coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9-1-1 structural diversification. The protozoan parasite Leishmania is an early-branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9-1-1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1-deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9-1-1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Exonucleasas/metabolismo , Leishmania major/fisiología , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Leishmania major/genética , Leishmania major/metabolismo
4.
Antimicrob Agents Chemother ; 58(1): 144-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24145529

RESUMEN

Treatment failure and parasite drug susceptibility in dermal leishmaniasis caused by Leishmania (Viannia) species are poorly understood. Prospective evaluation of drug susceptibility of strains isolated from individual patients before drug exposure and at clinical failure allows intrinsic and acquired differences in susceptibility to be discerned and analyzed. To determine whether intrinsic susceptibility or loss of susceptibility to miltefosine contributed to treatment failure, we evaluated the miltefosine susceptibility of intracellular amastigotes and promastigotes of six Leishmania (Viannia) braziliensis and six Leishmania (Viannia) panamensis strains isolated sequentially, at diagnosis and treatment failure, from two children and four adults ≥55 years old with concurrent conditions. Four patients presented only cutaneous lesions, one had mucosal disease, and one had disseminated mucocutaneous disease. Expression of the Leishmania drug transporter genes abca2, abca3, abcc2, abcc3, abcg4, abcg6, and LbMT was evaluated by quantitative reverse transcription-PCR (qRT-PCR). Intracellular amastigotes (median 50% effective concentration [EC50], 10.7 µmol/liter) were more susceptible to miltefosine than promastigotes (median EC50, 55.3 µmol/liter) (P < 0.0001). Loss of susceptibility at failure, demonstrated by a miltefosine EC50 of >32 µmol/liter (the upper limit of intracellular amastigote assay), occurred in L. panamensis infection in a child and in L. braziliensis infection in an adult and was accompanied by decreased expression of the miltefosine transporter LbMT (LbMT/ß-tubulin, 0.42- to 0.26-fold [P = 0.039] and 0.70- to 0.57-fold [P = 0.009], respectively). LbMT gene polymorphisms were not associated with susceptibility phenotype. Leishmania ABCA3 transporter expression was inversely correlated with miltefosine susceptibility (r = -0.605; P = 0.037). Loss of susceptibility is one of multiple factors involved in failure of miltefosine treatment in dermal leishmaniasis.


Asunto(s)
Leishmania/efectos de los fármacos , Leishmania/patogenicidad , Leishmaniasis Cutánea/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Niño , Resistencia a Medicamentos , Femenino , Humanos , Leishmaniasis Cutánea/metabolismo , Masculino , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fosforilcolina/uso terapéutico , Estudios Prospectivos , Insuficiencia del Tratamiento , Adulto Joven
5.
Elife ; 92020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32897188

RESUMEN

DNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.


Asunto(s)
Estructuras Cromosómicas , Replicación del ADN/genética , Duplicación de Gen/genética , Genoma de Protozoos/genética , Leishmania major/genética , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Cromosomas/química , Cromosomas/genética , Histonas/genética , Histonas/metabolismo , Fase S/genética
6.
Front Cell Dev Biol ; 8: 602956, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33415107

RESUMEN

DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA