Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pathogens ; 11(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35055989

RESUMEN

The symbiosis in trypanosomatids is a mutualistic relationship characterized by extensive metabolic exchanges between the bacterium and the protozoan. The symbiotic bacterium can complete host essential metabolic pathways, such as those for heme, amino acid, and vitamin production. Experimental assays indicate that the symbiont acquires phospholipids from the host trypanosomatid, especially phosphatidylcholine, which is often present in bacteria that have a close association with eukaryotic cells. In this work, an in-silico study was performed to find genes involved in the glycerophospholipid (GPL) production of Symbiont Harboring Trypanosomatids (SHTs) and their respective bacteria, also extending the search for trypanosomatids that naturally do not have symbionts. Results showed that most genes for GPL synthesis are only present in the SHT. The bacterium has an exclusive sequence related to phosphatidylglycerol production and contains genes for phosphatidic acid production, which may enhance SHT phosphatidic acid production. Phylogenetic data did not indicate gene transfers from the bacterium to the SHT nucleus, proposing that enzymes participating in GPL route have eukaryotic characteristics. Taken together, our data indicate that, differently from other metabolic pathways described so far, the symbiont contributes little to the production of GPLs and acquires most of these molecules from the SHT.

2.
Nucleic Acids Res ; 36(Database issue): D547-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17981844

RESUMEN

ProtozoaDB (http://www.biowebdb.org/protozoadb) is being developed to initially host both genomics and post-genomics data from Plasmodium falciparum, Entamoeba histolytica, Trypanosoma brucei, T. cruzi and Leishmania major, but will hopefully host other protozoan species as more genomes are sequenced. It is based on the Genomics Unified Schema and offers a modern Web-based interface for user-friendly data visualization and exploration. This database is not intended to duplicate other similar efforts such as GeneDB, PlasmoDB, TcruziDB or even TDRtargets, but to be complementary by providing further analyses with emphasis on distant similarities (HMM-based) and phylogeny-based annotations including orthology analysis. ProtozoaDB will be progressively linked to the above-mentioned databases, focusing in performing a multi-source dynamic combination of information through advanced interoperable Web tools such as Web services. Also, to provide Web services will allow third-party software to retrieve and use data from ProtozoaDB in automated pipelines (workflows) or other interoperable Web technologies, promoting better information reuse and integration. We also expect ProtozoaDB to catalyze the development of local and regional bioinformatics capabilities (research and training), and therefore promote/enhance scientific advancement in developing countries.


Asunto(s)
Bases de Datos Genéticas , Genoma de Protozoos , Animales , Gráficos por Computador , Entamoeba histolytica/genética , Genómica , Internet , Leishmania major/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Programas Informáticos , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Interfaz Usuario-Computador
4.
PeerJ ; 6: e5551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186700

RESUMEN

Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process.

5.
Adv Appl Bioinform Chem ; 8: 23-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26604801

RESUMEN

Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

6.
BMC Res Notes ; 7: 132, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24606808

RESUMEN

BACKGROUND: The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. FINDINGS: STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. CONCLUSION: STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Flujo de Trabajo , Bases de Datos Factuales/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Internet , Filogenia , Reproducibilidad de los Resultados
7.
Evol Bioinform Online ; 7: 107-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21863127

RESUMEN

We have developed a semi-automatic methodology to reconstruct the phylogenetic species tree in Protozoa, integrating different phylogenetic algorithms and programs, and demonstrating the utility of a supermatrix approach to construct phylogenomics-based trees using 31 universal orthologs (UO). The species tree obtained was formed by three major clades that were related to three groups of data: i) Species containing at least 80% of UO (25/31) in the concatenated multiple alignment or supermatrix, this clade was called C1, ii) Species containing between 50%-79% (15-24/31) of UO called C2, and iii) Species containing less than 50% (1-14/31) of UO called C3. C1 was composed by only protozoan species, C2 was composed by species related to Protozoa, and C3 was composed by some species of C1 (Protozoa) and C2 (related to Protozoa). Our phylogenomics-based methodology using a supermatrix approach proved to be reliable with protozoan genome data and using at least 25 UO, suggesting that (a) the more UO used the better, (b) using the entire UO sequence or just a conserved block of it for the supermatrix produced similar phylogenomic trees.

8.
Rio de Janeiro; s.n; 2010. xxiii,234 p. ilus, tab, graf.
Tesis en Portugués | LILACS | ID: lil-573289

RESUMEN

A reconstrução da história evolutiva, assim como o estabelecimento de hipóteses que demonstrem as relações filogenéticas dos protozoários bem como dos genes codificados pelos elementos Genéticos Móveis (EGM) requerem o uso de várias abordagens e ferramentas, as quais não se encontram disponíveis de maneira integrada nem de maneira amigável. Diferentes abordagens filogenéticas, filogenômicas e evolutivas são necessárias para a inferência da filogenia de espécies e o estudo de genes pouco conservados como a transcriptase reversa, o gene mais representativo da classe I dos EGM, os retrotransposons. Os principais algoritimos filogenéticos e os programas que os executam têm sido unificados num único sistema: ARPA, escrito na linguagem de programação PYTHON. O sistema ARPA e a interface web estão hospedados na FIOCRUZ e estão disponíveis no endereço http://arpa.biowebdb.org. Eles estão sendo integrados ao sistema de banco de dados ProtozoaDB (http://protozoad.biowebdb.org) e ao sistema de anotações semi-automática Stingray (http://stingray.biowebdb.org/). Uma abordagem baseada nos fundamentos da filogenômica e evolução foi utilizada para desenvolver cinco objetivos: (i) analisar e inferir a filogenia dos genes relacionados à resistência de drogas em protozoários, (ii) reconstruir a árvore de espécies de protozoários, (iii) realizar estudos de filogenômica dos EGM em protozoários, (iv) inferir a filogenia da telomerase e dos elementos de retrotransposição em Tri-tryps e (v) adaptar e ampliar o esquema Phylo ao banco de dados GUS para o armazenamento da informação filogenética. Os principais resultados obtidos para cada objetivo são: (i) As inferências filogenéticas dos genes AQP, hsp70, GP63, TRYR e MRPA relacionados à resistência a drogas em protozoários demonstrou a viabilidade das execuções do sistema ARPA; (ii) a árvore de espécies de protozoários usando a abordagem da super matriz provou ser confiável, e o teste PTP e a estatística G1 demonstraram que os dados moleculares deste estudo possuem sinal filogenético; (iii) o RAAXML foi o programa mais consistente ao lidar com os diferentes níveis de polimorfismos destes genes, a detecção in silico da seleção positiva destes genes foi detectada nas análises pareadas dos modelos M1-M2 e M7-M8, porém o par M0-M3 indicou uma alta variabilidade da razão w entre os sítios; (iv) foi observada a monofilia para a telomerase a que está mais relacionada à trancriptase reversa dos retrotransposons não-LTR; (iv) um novo esquema Phylo foi concebido e incorporado no GUS 3.5 estendendo-o a fim de armazenar os dados obtidos de inferências filogenéticas. As principais conclusões são: (i) O sistema ARPA é uma alternativa viável, eficiente, fácil e de tempo reduzido para as análises filogenômicas. O RAXML foi considerado o programa mais consistente e foi observado que as árvores construídas usando as sequência inteiras e/ou as trimadas com o TRIMAL apresentaram os melhores resultados. A abordagem da supermatriz apresentou melhores resultados do que a superárvore; (ii) as relações entre os grupos de protozoários estão de acordo com estudos anteriores da literatura, os quais determinaram também uma monofilia para os protozoários. A inclusão de mais dados/genes é necessária para obter uma árvore robusta; (iii) foram reconstruídas as árvores dos genes dos EGM e inferida a filogenia para cada um deles. O modelo M3 indicou uma alta variabilidade da razão w entre os sítios e o M7 e o M8 indicaram a presença de seleção positiva para todos os genes dos EGM; (iv) a telomerase formou um grupo monofilético mais relacionado à trancriptase reversa dos não-LTR; (v) o esquema Phylo armazena os dados obtidos de experiências filogenéticas, mantendo as relações de herança filogenética entre cada um dos táxons, o que permite realizar consultas usando as informações dos ramos, dos nós e táxons da árvore.


Asunto(s)
Animales , Biología Computacional , Evolución Molecular , Genes Protozoarios , Secuencias Repetitivas Esparcidas , Filogenia , Regulación de la Expresión Génica/fisiología
9.
Rio de Janeiro; s.n; 24 abr. 2006. xxi,151 p. ilus, tab, graf.
Tesis en Portugués | LILACS | ID: lil-443973

RESUMEN

Elementos Genéticos Móveis(EGM)são segmentos de DNA que codificam enzimas e outras proteínas que mediam a movimentação do DNA dentro de genomas(mobilidade intracelular)ou entre células bacterianas(mobilidade intercelular).EGM estão presentes na maioria dos genomas, e poderiam ser participantes ancestrais na formação do genoma.A detecção de EGM foi feita usando os perfis Hidden Markov Models(HMM):HMMER e SAM,que foram adaptados para detectar padrões conservados em múltiplas seqüências biológicas,e têm muitas aplicações na procura ou detecção,em bases de dados,de genes de proteínas homólogas.O objetivo deste trabalho foi padronizar o uso dos perfis HMM para a detecção de EGM e desenvolver um sistema baseado na Web para o estudo de genômica comparativa de EGM.HMMER e SAM têm gerado bons resultados e apresentam melhor desempenho que os métodos tradicionais,como o BLAST e FASTA,para a identificação de homologia de seqüências protéicas.Foi testado e padronizado o uso de...Logo depois todas as proteínas agrupadas foram divididas em sub-grupos usando o programa CLUSTALW.Foram obtidos 1734 sub-grupos de um total de 5423 proteínas.Cada sub-grupo foi alinhado usando os programas ALIGN-M,CLUSTALW,LOBSTER,MUSCLE, PROBCONS e T-COFFEE.Perfis HMM foram construídos para cada alinhamento usando HMMER e SAM,para comparar e identificar o melhor HMM,em termos de sensibilidade e especificidade.As curvas ROC foram usadas para este propósito.PROBCONS com HMMER e SAM mostrou melhores resultados que outros programas para a identificação de homólogos distantes.HMMER foi usado para explorar e detectar enzimas de EGM.Em Wolbachia sp.foram detectados 35 genes prováveis e hipotéticos,97 genes reconhecidos como EGM mas anotados como outros genes,e 55 genes de EGM anotados corretamente.Em tripanosomatídeos foram encontrados 107 enzimas de EGM:68 transcriptases reversas,34 ribonucleases H,3 transposases e 2 proteínas gag.A distribuição destas enzimas nos tripanosomatídeos foi:33 em T.vivax,52...


Asunto(s)
Biología Computacional , Secuencias Repetitivas Esparcidas , Trypanosomatina/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA