Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(33): e2204338119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939709

RESUMEN

Despite the recent discovery of tissue regeneration enhancers in highly regenerative animals, upstream and downstream genetic programs connected by these enhancers still remain unclear. Here, we performed a genome-wide analysis of enhancers and associated genes in regenerating nephric tubules of Xenopus laevis. Putative enhancers were identified using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) analyses. Their target genes were predicted based on their proximity to enhancers on genomic DNA and consistency of their transcriptome profiles to ATAC-seq/ChIP-seq profiles of the enhancers. Motif enrichment analysis identified the central role of Krüppel-like factors (Klf) in the enhancer. Klf15, a member of the Klf family, directly binds enhancers and stimulates expression of regenerative genes, including adrenoreceptor alpha 1A (adra1a), whereas inhibition of Klf15 activity results in failure of nephric tubule regeneration. Moreover, pharmacological inhibition of Adra1a-signaling suppresses nephric tubule regeneration, while its activation promotes nephric tubule regeneration and restores organ size. These results indicate that Klf15-dependent adrenergic receptor signaling through regeneration enhancers plays a central role in the genetic network for kidney regeneration.


Asunto(s)
Elementos de Facilitación Genéticos , Túbulos Renales , Factores de Transcripción de Tipo Kruppel , Receptores Adrenérgicos , Regeneración , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Túbulos Renales/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Receptores Adrenérgicos/metabolismo , Regeneración/genética , Xenopus laevis
2.
Dev Biol ; 493: 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279927

RESUMEN

Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 â€‹kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 â€‹kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.


Asunto(s)
Pronefro , Tretinoina , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pronefro/metabolismo , Riñón/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa/metabolismo
3.
Dev Biol ; 500: 22-30, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37247832

RESUMEN

Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.


Asunto(s)
Epigénesis Genética , Extremidades , Animales , Xenopus laevis/genética , Animales Modificados Genéticamente , Extremidades/fisiología , Factores de Transcripción/genética
4.
Dev Growth Differ ; 66(3): 256-265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439617

RESUMEN

Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of ß-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.


Asunto(s)
Fosfatasa Alcalina , Calor , Animales , Femenino , Embarazo , Xenopus laevis , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/análisis , Placenta , Animales Modificados Genéticamente
5.
Dev Growth Differ ; 64(4): 219-225, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338712

RESUMEN

The CRISPR/Cas9 method has become popular for gene disruption experiments in Xenopus laevis. However, the experimental conditions that influence the efficiency of CRISPR/Cas9 remain unclear. To that end, we developed an image analysis technique for the semi-quantitative evaluation of the pigment phenotype resulting from the disruption of tyrosinase genes in X. laevis using a CRISPR/Cas9 approach, and then examined the effects of varying five experimental parameters (timing of the CRISPR reagent injection into developing embryos; amount of Cas9 mRNA in the injection reagent; total injection volume per embryo; number of injection sites per embryo; and the culture temperature of the injected embryos) on the gene disruption efficiency. The results of this systematic analysis suggest that the highest possible efficiency of target gene disruption can be achieved by injecting a total of 20 nL of the CRISPR reagent containing 1500 pg of Cas9 mRNA or 4 ng of Cas9 protein into two separate locations (10 nL each) of one-cell stage embryos cultured at 22°C. This study also highlights the importance of balancing the experimental parameters for increasing gene disruption efficiency and provides valuable insights into the optimal conditions for applying the CRISPR/Cas9 system to new experimental organisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Fenotipo , ARN Mensajero/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Nature ; 538(7625): 336-343, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762356

RESUMEN

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Asunto(s)
Evolución Molecular , Genoma/genética , Filogenia , Tetraploidía , Xenopus laevis/genética , Animales , Cromosomas/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Diploidia , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Cariotipo , Anotación de Secuencia Molecular , Mutagénesis/genética , Seudogenes , Xenopus/genética
7.
Dev Growth Differ ; 62(5): 343-354, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32096563

RESUMEN

During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regeneración/genética , Xenopus laevis/genética , Animales , Proteínas de Xenopus/genética , Xenopus laevis/fisiología
8.
Dev Biol ; 426(2): 291-300, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27393661

RESUMEN

Cell proliferation is strictly regulated by the dosage balance among cell-cycle regulators such as CDK/cyclin complexes and CDK-Inhibitors. Even in the allotetraploid genome of Xenopus laevis, the dosage balance must be maintained for animals to stay alive, and the duplicated homeologous genes seem to have gradually changed, through evolution, resulting in the best genes for them to thrive. In the Xenopus laevis genome, while homeologous gene pairs of CDKs are fundamentally maintained and a few cyclin genes are amplified, homeologous gene pairs of the important CDK-Inhibitors, CDKn1c and CDKn2a, are deleted from chromosomes L and S. Although losses of CDKn1c and CDKn2a can lead to diseases in humans, their loss in X. laevis does not affect the animals' health. Also, another gene coding CDKn1b is lost besides CDKn1c and CDKn2a in the genome of Xenopus tropicalis. These findings suggest a high resistance of Xenopus to diseases. We also found that CDKn2c.S expression is higher than that of CDKn2c.L, and a conserved noncoding sequence (CNS) of CDKn2c genomic loci on X. laevis chromosome S and X. tropicalis has an enhancement activity in regulating the different expression. These findings together indicate a surprising fragility of CDK inhibitor gene loci in the Xenopus genome in spite of their importance, and may suggest that factors other than CDK-inhibitors decelerate cell-cycling in Xenopus.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Xenopus/genética , Xenopus/genética , Secuencia de Aminoácidos , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Diploidia , Embrión no Mamífero/fisiología , Evolución Molecular , Eliminación de Gen , Especiación Genética , Inestabilidad Genómica , Familia de Multigenes , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Tetraploidía , Xenopus/embriología , Xenopus laevis/embriología , Xenopus laevis/genética
9.
Dev Biol ; 425(2): 152-160, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28359808

RESUMEN

During vertebrate evolution, whole genome duplications resulted in a number of duplicated genes, some of which eventually changed their expression patterns and/or levels via alteration of cis-regulatory sequences. However, the initial process involved in such cis-regulatory changes remains unclear. Therefore, we investigated this process by analyzing the duplicated hand1 genes of Xenopus laevis (hand1.L and hand1.S), which were generated by allotetraploidization 17-18 million years ago, and compared these with their single ortholog in the ancestral-type diploid species X. tropicalis. A dN/dS analysis indicated that hand1.L and hand1.S are still under purifying selection, and thus, their products appear to retain ancestral functional properties. RNA-seq and in situ hybridization analyses revealed that hand1.L and hand1.S have similar expression patterns to each other and to X. tropicalis hand1, but the hand1.S expression level was much lower than the hand1.L expression level in the primordial heart. A comparative sequence analysis, luciferase reporter analysis, ChIP-PCR analysis, and transgenic reporter analysis showed that a single nucleotide substitution in the hand1.S promoter was responsible for the reduced expression in the heart. These findings demonstrated that a small change in the promoter sequence can trigger diversification of duplicated gene expression prior to diversification of their encoded protein functions in a young duplicated genome.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Homología de Secuencia de Ácido Nucleico , Xenopus/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Secuencia Conservada/genética , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Genes Reporteros , Humanos , Hibridación in Situ , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Sintenía/genética , Xenopus/embriología
10.
Dev Biol ; 427(1): 84-92, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501477

RESUMEN

Common models for the evolution of duplicated genes after genome duplication are subfunctionalization, neofunctionalization, and pseudogenization. Although the crucial roles of cis-regulatory mutations in subfunctionalization are well-documented, their involvement in pseudogenization and/or neofunctionalization remains unclear. We addressed this issue by investigating the evolution of duplicated homeobox genes, six6.L and six6.S, in the allotetraploid frog Xenopus laevis. Based on a comparative expression analysis, we observed similar eye-specific expression patterns for the two loci and their single ortholog in the ancestral-type diploid species Xenopus tropicalis. However, we detected lower levels of six6.S expression than six6.L expression. The six6.S enhancer sequence was more highly diverged from the orthologous enhancer of X. tropicalis than the six6.L enhancer, and showed weaker activity in a transgenic reporter assay. Based on a phylogenetic analysis of the protein sequences, we observed greater divergence between X. tropicalis Six6 and Six6.S than between X. tropicalis Six6 and Six6.L, and the observed mutations were reminiscent of a microphthalmia mutation in human SIX6. Misexpression experiments showed that six6.S has weaker eye-enlarging activity than six6.L, and targeted disruption of six6.L reduced the eye size more significantly than that of six6.S. These results suggest that enhancer attenuation stimulates the accumulation of hypomorphic coding mutations, or vice versa, in one duplicated gene copy and facilitates pseudogenization. We also underscore the value of the allotetraploid genome of X. laevis as a resource for studying latent pathogenic mutations.


Asunto(s)
Proteínas de Homeodominio/genética , Mutación/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Duplicados/genética , Proteínas de Homeodominio/clasificación , Hibridación in Situ , Filogenia , Isoformas de Proteínas/genética , Seudogenes/genética , Retina/embriología , Retina/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Xenopus laevis/embriología
11.
Dev Biol ; 432(2): 265-272, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29079423

RESUMEN

Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration.


Asunto(s)
Queratinas/genética , Queratinas/metabolismo , Regeneración/fisiología , Animales , Epitelio/metabolismo , Extremidades/fisiología , Miembro Posterior/fisiología , Larva/genética , Larva/fisiología , Proteínas de Xenopus/genética , Xenopus laevis/genética
12.
Dev Biol ; 426(2): 301-324, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810169

RESUMEN

Xenopus laevis has an allotetraploid genome of 3.1Gb, in contrast to the diploid genome of a closely related species, Xenopus tropicalis. Here, we identified 412 genes (189 homeolog pairs, one homeologous gene cluster pair, and 28 singletons) encoding transcription factors (TFs) in the X. laevis genome by comparing them with their orthologs from X. tropicalis. Those genes include the homeobox gene family (Mix/Bix, Lhx, Nkx, Paired, POU, and Vent), Sox, Fox, Pax, Dmrt, Hes, GATA, T-box, and some clock genes. Most homeolog pairs for TFs are retained in two X. laevis subgenomes, named L and S, at higher than average rates (87.1% vs 60.2%). Among the 28 singletons, 82.1% were deleted from chromosomes of the S subgenome, a rate similar to the genome-wide average (82.1% vs 74.6%). Interestingly, nkx2-1, nkx2-8, and pax9, which reside consecutively in a postulated functional gene cluster, were deleted from the S chromosome, suggesting cluster-level gene regulation. Transcriptome correlation analysis demonstrated that TF homeolog pairs tend to have more conservative developmental expression profiles than most other types of genes. In some cases, however, either of the homeologs may show strongly different spatio-temporal expression patterns, suggesting neofunctionalization, subfunctionalization, or nonfunctionalization after allotetraploidization. Analyses of otx1 suggests that homeologs with much lower expression levels have undergone greater amino acid sequence diversification. Our comprehensive study implies that TF homeologs are highly conservative after allotetraploidization, possibly because the DNA sequences that they bind were also duplicated, but in some cases, they differed in expression levels or became singletons due to dosage-sensitive regulation of their target genes.


Asunto(s)
Perfilación de la Expresión Génica , Factores de Transcripción/genética , Xenopus laevis/genética , Animales
18.
Dev Biol ; 396(1): 31-41, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25284091

RESUMEN

The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate epimorphic regeneration as well as for organ size control in appendage regeneration. In regenerative medicine, these findings should contribute to the development of three-dimensional organs with the correct size for a patient's body.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Regeneración , Cola (estructura animal)/embriología , Transactivadores/fisiología , Proteínas de Xenopus/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/metabolismo , Calor , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Médula Espinal/fisiología , Células Madre/citología , Transcripción Genética , Xenopus laevis , Proteínas Señalizadoras YAP
19.
BMC Biol ; 12: 40, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24885223

RESUMEN

BACKGROUND: Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS: In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS: The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.


Asunto(s)
Evolución Biológica , Proteínas de Homeodominio/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Apoptosis/genética , Movimiento Celular , Elementos de Facilitación Genéticos/genética , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Cresta Neural/citología , Neuronas/citología , Neuronas/metabolismo , Células Receptoras Sensoriales/citología , Transactivadores/metabolismo , Proteínas de Xenopus/genética
20.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649703

RESUMEN

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Asunto(s)
Extremidades , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Regeneración , Proteínas de Xenopus , Xenopus laevis , Animales , Proliferación Celular/genética , Extremidades/fisiología , Edición Génica , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Larva/crecimiento & desarrollo , Larva/genética , Regeneración/genética , Regeneración/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Masculino , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA