Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 95(3): 286-293, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591537

RESUMEN

Inhibition of p97, a key player in the ubiquitin-proteasome degradation pathway, has been proposed as a treatment of cancer. This concept was nearly realized recently when a potent p97 inhibitor, 1-[4-(benzylamino)-5H,7H,8H-pyrano[4,3-d]pyrimidin-2-yl]-2-methyl-1H-indole-4-carboxamide (CB-5083), was developed and demonstrated broad antitumor activity in various tumor models. CB-5083 functions as a competitive inhibitor that binds selectively to the ATP-binding site of the D2 domain, although both the D1 and D2 ATPase sites of p97 are highly similar. Despite its promising anticancer activity, CB-5083 failed its phase I clinical trials due to an unexpected off-target effect, which necessitates further improvement of the inhibitor. In this study, we determined the crystal structure of N-terminal domain-truncated p97 in complex with CB-5083. It provides a structural basis for the specificity of CB-5083 toward the D2 domain, offers an explanation in atomic detail for the mutations that confer resistance to CB-5083, and establishes a foundation for future structure-guided efforts to develop the next generation of p97 inhibitors.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Indoles/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Pirimidinas/farmacología , Adenosina Trifosfato/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Mutación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos
2.
Mol Cancer Res ; 21(4): 316-331, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790955

RESUMEN

Combinatorial molecular therapy in pancreatic ductal adenocarcinoma (PDAC) has yielded largely disappointing results in clinical testing to-date as a multitude of adaptive resistance mechanisms is making selection of patients via molecular markers that capture essential, intersecting signaling routes challenging. Here, we report the scaffolding protein connector enhancer of kinase suppressor of Ras 1 (CNKSR1) as mediator of resistance to MAPK (MEK) inhibition. MEK inhibition in CNKSR1high cancer cells induces translocation of CNKSR1 to the plasma membrane where the scaffolding protein interacts with and stabilizes the phosphorylated form of AKT. CNKSR1-mediated AKT activation following MEK inhibition was associated with increased cellular p-PRAS40 levels and reduced nuclear translocation and cellular levels of FoxO1, a negative regulator of AKT signaling. In clinical PDAC specimens, high cytoplasmatic CNKSR1 levels correlated with increased cellular phospho-AKT and mTOR levels. Pharmacological co-blockade of AKT and MEK ranked top in induced synergies with MEK inhibition in CNKSR1high pancreas cancer cells among other inhibitor combinations targeting known CNKSR1 signaling. In vivo, CNKSR1high pancreatic tumors treated with AKT and MEK inhibitors showed improved outcome in the combination arm compared with single-agent treatment, an effect not observed in CNKSR1low models.Our results identify CNKSR1 as regulator of adaptive resistance to MEK inhibition by promoting crosstalk to AKT signaling via a scaffolding function for the phosphorylated form of AKT. CNSKR1 expression might be a possible molecular marker to enrich patients for future AKT-MEK inhibitor precision medicine studies. IMPLICATIONS: The CNKSR1 scaffold, identified within an RNAi screen as a novel mediator of resistance to MEK inhibition in pancreas cancer, connects the MAPK pathway and AKT signaling and may be adopted as a biomarker to select patients for combined MEK AKT blockade.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Línea Celular Tumoral , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas
3.
Sci Transl Med ; 12(530)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051227

RESUMEN

Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.


Asunto(s)
Lectinas de Unión a Manosa , Macrófagos Asociados a Tumores , Animales , Línea Celular Tumoral , Humanos , Inmunidad Innata , Lectinas Tipo C , Receptor de Manosa , Ratones , Receptores de Superficie Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA