Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 114(3): 701-704, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27617904

RESUMEN

Recombinant CHO (Chinese hamster ovary) cell lines producing therapeutic proteins often lose their production capability during long-term cultivation. To ensure that CHO production cell lines can be up-scaled to high-volume bioreactors, labor intensive stability studies of several months have to be performed to deselect clones that are losing productivity over time. The ability to predict whether clones will produce recombinant proteins at constant high levels, for example, through determination of biomarkers such as expression of specific genes, plasmid integration sites, or epigenetic patterns, or even to improve CHO host cell lines to increase the probability of the generation of stable clones would be highly beneficial. Previously, we reported that the lack of a telomeric region of chromosome 8 correlates with increased productivities and higher production stabilities of monoclonal antibody expressing CHO cell lines (Ritter A, Voedisch B, Wienberg J, Wilms B, Geisse S, Jostock T, Laux H. 2016a. Biotechnol Bioeng 113(5):1084-1093). Herein, we describe that the knock-out of the gene Fam60A, which is one of the genes located within the telomeric region of chromosome 8, in CHO-K1a cells leads to the isolation of significantly more clones with higher protein production stabilities of monoclonal antibodies during long-term cultivation. Biotechnol. Bioeng. 2017;114: 701-704. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ingeniería Celular/métodos , Proteínas de Unión al ADN/fisiología , Proteínas Recombinantes/metabolismo , Acetilación , Animales , Reactores Biológicos , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Histonas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
2.
Biotechnol Bioeng ; 113(11): 2433-42, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27183150

RESUMEN

Recently, we reported that the loss of a telomeric region of chromosome 8 in Chinese Hamster Ovary (CHO) cells correlates with higher recombinant productivities. New cell lines lacking this region, called CHO-C8DEL, showed several advantages during cell line generation and for the production of recombinant proteins (Ritter et al., 2016, Biotechnol Bioeng). Here, we performed knock-down and knock-out experiments of genes located within this telomeric region of chromosome 8 to identify the genes causing the observed phenotypes of CHO-C8DEL cell lines. We present evidence that loss or reduced expression of the gene C12orf35 is responsible for higher productivities and shorter recovery times during selection pressure. These effects are mediated by increased levels of mRNA of the exogenes heavy chain (HC) and light chain (LC) as well as dihydrofolate reductase (DHFR) and neomycin phosphotransferase (Neo) during the stable expression of antibodies. Biotechnol. Bioeng. 2016;113: 2433-2442. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células CHO/fisiología , Mejoramiento Genético/métodos , Proteínas Recombinantes/biosíntesis , Animales , Células CHO/citología , Cricetulus , Técnicas de Silenciamiento del Gen , Proteínas Recombinantes/genética , Regulación hacia Arriba/genética
3.
GigaByte ; 2023: gigabyte94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829656

RESUMEN

Irises are perennial plants, representing a large genus with hundreds of species. While cultivated extensively for their ornamental value, commercial interest in irises lies in the secondary metabolites present in their rhizomes. The Dalmatian Iris (Iris pallida Lam.) is an ornamental plant that also produces secondary metabolites with potential value to the fragrance and pharmaceutical industries. In addition to providing base notes for the fragrance industry, iris tissues and extracts possess antioxidant, anti-inflammatory and immunomodulatory effects. However, study of these secondary metabolites has been hampered by a lack of genomic information, requiring difficult extraction and analysis techniques. Here, we report the genome sequence of Iris pallida Lam., generated with Pacific Bioscience long-read sequencing, resulting in a 10.04-Gbp assembly with a scaffold N50 of 14.34 Mbp and 91.8% complete BUSCOs. This reference genome will allow researchers to study the biosynthesis of these secondary metabolites in much greater detail, opening new avenues of investigation for drug discovery and fragrance formulations.

4.
Cell Stem Cell ; 28(10): 1822-1837.e10, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34129813

RESUMEN

AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/ß-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/ß-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of ß-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/ß-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/ß-Catenin activity, balancing metabolic function and hepatocyte proliferation.


Asunto(s)
Hígado , Ubiquitina-Proteína Ligasas/genética , Animales , Proliferación Celular , Hepatocitos/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Ratones , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA