Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(17): 5669-5684, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32179649

RESUMEN

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Activación Enzimática , Zinc/metabolismo , Animales , Proteínas Aviares/metabolismo , Línea Celular , Pollos , Aparato de Golgi/metabolismo , Humanos , Multimerización de Proteína
2.
Pediatr Investig ; 7(1): 6-12, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967740

RESUMEN

Importance: Transient neonatal zinc deficiency (TNZD) occurs in breastfed infants due to abnormally low breast milk zinc levels. Mutations in the solute carrier family 30 member 2 (SLC30A2) gene, which encodes the zinc transporter ZNT2, cause low zinc concentration in breast milk. Objective: This study aimed to provide further insights into TNZD pathophysiology. Methods: SLC30A2 sequencing was performed in three unrelated Japanese mothers, whose infants developed TNZD due to low-zinc milk consumption. The effects of the identified mutations were examined using cell-based assays and luciferase reporter analysis. Results: Novel SLC30A2 mutations were identified in each mother. One harbored a heterozygous missense mutation in the ZNT2 zinc-binding site, which resulted in defective zinc transport. The other two mothers exhibited multiple heterozygous mutations in the SLC30A2 promoter, the first mutations in the SLC30A2 regulatory region reported to date. Interpretation: This report provides new genetic insights into TNZD pathogenesis in breastfed infants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA