Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Transplantation ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38995954

RESUMEN

BACKGROUND: The clinical standard for pancreas preservation for transplantation is static cold storage (SCS). Oxygenation during preservation has been shown to be advantageous in clinical studies. This study evaluates the efficiency of different oxygenation modalities during hypothermic pancreas preservation. METHODS: Thirty-two porcine pancreases were procured in a controlled donation after circulatory death model and were divided to be preserved in 8 groups: (1) SCS, (2) hypothermic machine perfusion (HMP), (3) hypothermic oxygenated machine perfusion (HOPE) with 21% oxygen, (4) HOPE and 100%, (5) SCS and oxygen carrier, M101, (6) HMP and M101, (7) HOPE 21% and M101, and (8) HOPE 100% and M101. All the groups underwent 24 h of hypothermic preservation, followed by 2 h of normothermic reperfusion. Oxygen partial pressures were assessed using parenchymal probes. Perfusion parameters, perfusate samples, and tissue biopsies were analyzed. RESULTS: This study showed that HMP was linked to higher tissue oxygen partial pressures, lower succinate levels, and better reperfusion parameters. Furthermore, the addition of M101 to either SCS or HMP was associated with lower succinate and creatinine phosphokinase accumulation, suggesting a protective effect against ischemia. CONCLUSIONS: Our research has demonstrated the efficacy of machine perfusion in hypothermic conditions in providing oxygen to the pancreas during preservation and conditioning the pancreatic microvasculature for reperfusion during transplantation. Furthermore, the addition of M101 suggests a protective effect on the graft from ischemia.

2.
Ann Transl Med ; 10(1): 1, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35242846

RESUMEN

BACKGROUND: Advances in organ preservation, reconditioning and assessment have been driven by the increasing necessity to utilise organs from extended criteria donors, particularly donors after circulatory death. Research efforts in this area have aided translation of machine perfusion technology into clinical practice. Pigs are anatomically and physiologically similar to humans and are an excellent model. However, conducting large animal experimental research is challenging and typically limited by ethical and economic constraints. Here we describe a reproducible, cost-effective multi-organ abdominal procurement model of porcine organs from the slaughterhouse. METHODS: Domestic pigs are electrically stunned and exsanguinated following the standard abattoir process. Via a longitudinal midline incision, the thoracoabdominal viscera are removed en bloc by incising along the anterior vertebral plane. The abdominal organs are isolated, perfused and separated preserving their respective vasculature, allowing individual organ use for specific experiments. RESULTS: The warm ischaemic time is kept between 15-30 minutes. Using this highly protocolized procurement technique we have procured 12 livers, 162 kidneys and 12 pancreata for research, the majority of which have been utilized for ex situ perfusion experiments. CONCLUSIONS: We have described a reliable and reproducible procedure for abdominal multi-organ procurement from slaughterhouse pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA