Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Chem Inf Model ; 62(16): 3896-3909, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35948041

RESUMEN

Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.


Asunto(s)
Antígenos de Neoplasias , ADN-Topoisomerasas de Tipo II , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Antígenos de Neoplasias/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Hidrólisis
2.
J Enzyme Inhib Med Chem ; 33(1): 1239-1247, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30141354

RESUMEN

Autolysin E (AtlE) is a cell wall degrading enzyme that catalyzes the hydrolysis of the ß-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units of the bacterial peptidoglycan. Using our recently determined crystal structure of AtlE from Staphylococcus aureus and a combination of pharmacophore modeling, similarity search, and molecular docking, a series of (Phenylureido)piperidinyl benzamides were identified as potential binders and surface plasmon resonance (SPR) and saturation-transfer difference (STD) NMR experiments revealed that discovered compounds bind to AtlE in a lower micromolar range. (phenylureido)piperidinyl benzamides are the first reported non-substrate-like compounds that interact with this enzyme and enable further study of the interaction of small molecules with bacterial AtlE as potential inhibitors of this target.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Piperidinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Staphylococcus aureus/enzimología , Relación Estructura-Actividad
3.
Angew Chem Int Ed Engl ; 55(19): 5745-8, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27037901

RESUMEN

Elevated expression of the immunoproteasome has been associated with autoimmune diseases, inflammatory diseases, and various types of cancer. Selective inhibitors of the immunoproteasome are not only scarce, but also almost entirely restricted to peptide-based compounds. Herein, we describe nonpeptidic reversible inhibitors that selectively block the chymotrypsin-like (ß5i) subunit of the human immunoproteasome in the low micromolar range. The most potent of the reversibly acting compounds were then converted into covalent, irreversible, nonpeptidic inhibitors that retained selectivity for the ß5i subunit. In addition, these inhibitors discriminate between the immunoproteasome and the constitutive proteasome in cell-based assays. Along with their lack of cytotoxicity, these data point to these nonpeptidic compounds being suitable for further investigation as ß5i-selective probes for possible application in noncancer diseases related to the immunoproteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Concentración 50 Inhibidora , Cinética , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/toxicidad , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/toxicidad , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
4.
J Comput Aided Mol Des ; 29(8): 707-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25947277

RESUMEN

Molecular dynamics (MD) and molecular docking are commonly used to study molecular interactions in drug discovery. Most docking approaches consider proteins as rigid, which can decrease the accuracy of predicted docked poses. Therefore MD simulations can be used prior to docking to add flexibility to proteins. We evaluated the contribution of using MD together with docking in a docking study on human cathepsin B, a well-studied protein involved in numerous pathological processes. Using CHARMM biomolecular simulation program and AutoDock Vina molecular docking program, we found, that short MD simulations significantly improved molecular docking. Our results, expressed with the area under the receiver operating characteristic curves, show an increase in discriminatory power i.e. the ability to discriminate active from inactive compounds of molecular docking, when docking is performed to selected snapshots from MD simulations.


Asunto(s)
Catepsina B/química , Evaluación Preclínica de Medicamentos/métodos , Simulación de Dinámica Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Catepsina B/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Curva ROC , Bibliotecas de Moléculas Pequeñas/química
5.
PLoS Comput Biol ; 9(11): e1003341, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244144

RESUMEN

A challenge in structural genomics is prediction of the function of uncharacterized proteins. When proteins cannot be related to other proteins of known activity, identification of function based on sequence or structural homology is impossible and in such cases it would be useful to assess structurally conserved binding sites in connection with the protein's function. In this paper, we propose the function of a protein of unknown activity, the Tm1631 protein from Thermotoga maritima, by comparing its predicted binding site to a library containing thousands of candidate structures. The comparison revealed numerous similarities with nucleotide binding sites including specifically, a DNA-binding site of endonuclease IV. We constructed a model of this Tm1631 protein with a DNA-ligand from the newly found similar binding site using ProBiS, and validated this model by molecular dynamics. The interactions predicted by the Tm1631-DNA model corresponded to those known to be important in endonuclease IV-DNA complex model and the corresponding binding free energies, calculated from these models were in close agreement. We thus propose that Tm1631 is a DNA binding enzyme with endonuclease activity that recognizes DNA lesions in which at least two consecutive nucleotides are unpaired. Our approach is general, and can be applied to any protein of unknown function. It might also be useful to guide experimental determination of function of uncharacterized proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biología Computacional/métodos , Proteínas Bacterianas/clasificación , ADN/química , ADN/metabolismo , Modelos Estadísticos , Simulación de Dinámica Molecular , Conformación Proteica , Thermotoga maritima
6.
Chem Cent J ; 10: 41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27398092

RESUMEN

A protein, Tm1631 from the hyperthermophilic organism Thermotoga maritima belongs to a domain of unknown function protein family. It was predicted that Tm1631 binds with the DNA and that the Tm1631-DNA complex is an endonuclease repair system with a DNA repair function (Konc et al. PLoS Comput Biol 9(11): e1003341, 2013). We observed that the severely bent, strained DNA binds to the protein for the entire 90 ns of classical molecular dynamics (MD) performed; we could observe no significant changes in the most distorted region of the DNA, where the cleavage of phosphodiester bond occurs. In this article, we modeled the reaction mechanism at the interface between Tm1631 and its proposed ligand, the DNA molecule, focusing on cleavage of the phosphodiester bond. After addition of two Mg(2+) ions to the reaction center and extension of classical MD by 50 ns (totaling 140 ns), the DNA ligand stayed bolted to the protein. Results from density functional theory quantum mechanics/molecular mechanics (QM/MM) calculations suggest that the reaction is analogous to known endonuclease mechanisms: an enzyme reaction mechanism with two Mg(2+) ions in the reaction center and a pentacovalent intermediate. The minimum energy pathway profile shows that the phosphodiester bond cleavage step of the reaction is kinetically controlled and not thermodynamically because of a lack of any energy barrier above the accuracy of the energy profile calculation. The role of ions is shown by comparing the results with the reaction mechanisms in the absence of the Mg(2+) ions where there is a significantly higher reaction barrier than in the presence of the Mg(2+) ions.Graphical abstractA protein, Tm1631 from the hyperthermophilic organism Thermotoga maritima belongs to a domain of unknown function protein family. We modeled the reaction mechanism at the interface between Tm1631 and its proposed ligand, the DNA molecule, focusing on cleavage of the phosphodiester bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA