Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31708126

RESUMEN

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colon/patología , Células Madre/patología , Células 3T3 , Animales , Colitis/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Proteínas de Homeodominio/metabolismo , Ratones , Modelos Biológicos , Oxígeno/farmacología , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
2.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36801011

RESUMEN

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Asunto(s)
Ferroptosis , Linfocitos Intraepiteliales , Animales , Ratones , Linfocitos Intraepiteliales/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Oxidativo , Hidrocarburos
3.
Dev Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38942017

RESUMEN

Recent advances in human genetics have shed light on the genetic factors contributing to inflammatory diseases, particularly Crohn's disease (CD), a prominent form of inflammatory bowel disease. Certain risk genes associated with CD directly influence cytokine biology and cell-specific communication networks. Current CD therapies primarily rely on anti-inflammatory drugs, which are inconsistently effective and lack strategies for promoting epithelial restoration and mucosal balance. To understand CD's underlying mechanisms, we investigated the link between CD and the FGFR1OP gene, which encodes a centrosome protein. FGFR1OP deletion in mouse intestinal epithelial cells disrupted crypt architecture, resulting in crypt loss, inflammation, and fatality. FGFR1OP insufficiency hindered epithelial resilience during colitis. FGFR1OP was crucial for preserving non-muscle myosin II activity, ensuring the integrity of the actomyosin cytoskeleton and crypt cell adhesion. This role of FGFR1OP suggests that its deficiency in genetically predisposed individuals may reduce epithelial renewal capacity, heightening susceptibility to inflammation and disease.

4.
Dev Cell ; 57(2): 166-179.e6, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35016013

RESUMEN

Loss of differentiated cells to tissue damage is a hallmark of many diseases. In slow-turnover tissues, long-lived differentiated cells can re-enter the cell cycle or transdifferentiate to another cell type to promote repair. Here, we show that in a high-turnover tissue, severe damage to the differentiated compartment induces progenitors to transiently acquire a unique transcriptional and morphological postmitotic state. We highlight this in an acute villus injury model in the mouse intestine, where we identified a population of progenitor-derived cells that covered injured villi. These atrophy-induced villus epithelial cells (aVECs) were enriched for fetal markers but were differentiated and lineage committed. We further established a role for aVECs in maintaining barrier integrity through the activation of yes-associated protein (YAP). Notably, loss of YAP activity led to impaired villus regeneration. Thus, we define a key repair mechanism involving the activation of a fetal-like program during injury-induced differentiation, a process we term "adaptive differentiation."


Asunto(s)
Adaptación Biológica/fisiología , Desdiferenciación Celular/fisiología , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Desdiferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Femenino , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fosfoproteínas/metabolismo , Regeneración , Transducción de Señal/fisiología , Células Madre/citología , Proteínas Señalizadoras YAP/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 12(3): 1105-1120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930605

RESUMEN

BACKGROUND AND AIMS: The Cancer Genome Atlas (TCGA) project has identified HER2 mutations or amplification in 7% of colon cancers. In addition to HER2 mutations, colon cancer patients also possess co-occurring mutations in genes such as APC. Here, we investigated the role of HER2 and APC mutations on the crypt-villus architecture of the intestinal epithelium, localization of secretory cells, and expression of intestinal stem cell markers. METHODS: We generated a HER2 transgenic mouse (HER2V777L Tg) possessing an activating mutation commonly found in colorectal cancer patients, HER2V777L, using transcription activator-like effector nucleases-based gene editing technology. We expressed the HER2V777L transgene in mouse small intestine and colon using Lgr5-Cre and Villin-Cre recombinases. In addition, we analyzed Lgr5-Cre; APCmin; HER2V777L Tg mice by morphologic and gene expression assays on intestinal sections and organoids derived from the epithelium. RESULTS: HER2V777L expression resulted in hypertrophic crypt formation with expanded zones of proliferation. Proximal intestinal villi showed increased abundance of multiple differentiated lineages including extensive intermediate cell differentiation, as evidenced by MUC2/MMP7 co-immunofluorescence and transmission electron microscopy. HER2V777L expression in the context of APC loss resulted in further enhancement and expansion of the proliferative crypt compartment. CONCLUSIONS: We established an epithelial intrinsic role for HER2V777L on enhanced cellular proliferation. Additionally, we determined that HER2 and APC mutations, when combined, promote enhanced proliferation of intestinal crypts.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Mucosa Intestinal/patología , Mutación , Receptor ErbB-2/genética , Animales , Edición Génica , Hiperplasia , Mucosa Intestinal/química , Metaloproteinasa 7 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Mucina 2/metabolismo
6.
ACS Chem Biol ; 13(5): 1291-1298, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29584955

RESUMEN

Two biological activities of butyrate in the colon (suppression of proliferation of colonic epithelial stem cells and inflammation) correlate with inhibition of the activity of histone deacetylases. Cellular and biochemical studies of molecules similar in structure to butyrate, but different in molecular details (functional groups, chain-length, deuteration, oxidation level, fluorination, or degree of unsaturation), demonstrated that these activities were sensitive to molecular structure, and were compatible with the hypothesis that butyrate acts by binding to the Zn2+ in the catalytic site of histone deacetylases. Structure-activity relationships drawn from a set of 36 compounds offer a starting point for the design of new compounds targeting the inhibition of histone deacetylases. The observation that butyrate was more potent than other short-chain fatty acids is compatible with the hypothesis that crypts evolved (at least in part), to separate stem cells at the base of crypts from butyrate produced by commensal bacteria.


Asunto(s)
Butiratos/metabolismo , Colon/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Inflamación/prevención & control , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA