Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 311(2): e233136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742971

RESUMEN

Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Diagnóstico por Imagen de Elasticidad/métodos , Diagnóstico por Imagen de Elasticidad/instrumentación , Reproducibilidad de los Resultados , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cirrosis Hepática/diagnóstico por imagen
2.
Magn Reson Med ; 91(5): 2114-2125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270193

RESUMEN

PURPOSE: To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS: Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS: Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS: The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.


Asunto(s)
Medios de Contraste , Neoplasias Hepáticas , Ratas , Animales , Medios de Contraste/farmacología , Gadolinio/farmacología , Hepatocitos/metabolismo , Gadolinio DTPA , Hígado/metabolismo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/metabolismo , Imagen por Resonancia Magnética/métodos , Piruvatos/metabolismo , Lactatos/metabolismo
3.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38115605

RESUMEN

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Metionina/metabolismo , Colina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Aspártico/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Ratas Wistar , Hígado/metabolismo , Racemetionina/metabolismo , Dieta , Triglicéridos , Alanina/metabolismo , Lactatos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Magn Reson Med ; 91(5): 2153-2161, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193310

RESUMEN

PURPOSE: Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS: Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS: The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION: Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Abdomen/diagnóstico por imagen , Lactatos , Alanina , Isótopos de Carbono/metabolismo
5.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38482815

RESUMEN

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Asunto(s)
Azidas , Peptidoglicano , Humanos , Animales , Ratones , Azidas/química , Distribución Tisular , Tomografía de Emisión de Positrones , Bacterias , Aminoácidos , Alanina , Radioisótopos de Flúor/química
6.
J Infect Dis ; 228(Suppl 4): S249-S258, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788506

RESUMEN

Although nearly a century has elapsed since the discovery of penicillin, bacterial infections remain a major global threat. Global antibiotic use resulted in an astounding 42 billion doses of antibiotics administered in 2015 with 128 billion annual doses expected by 2030. This overuse of antibiotics has led to the selection of multidrug-resistant "super-bugs," resulting in increasing numbers of patients being susceptible to life-threatening infections with few available therapeutic options. New clinical tools are therefore urgently needed to identify bacterial infections and monitor response to antibiotics, thereby limiting overuse of antibiotics and improving overall health. Next-generation molecular imaging affords unique opportunities to target and identify bacterial infections, enabling spatial characterization as well as noninvasive, temporal monitoring of the natural course of the disease and response to therapy. These emerging noninvasive imaging approaches could overcome several limitations of current tools in infectious disease, such as the need for biological samples for testing with their associated sampling bias. Imaging of living bacteria can also reveal basic biological insights about their behavior in vivo.


Asunto(s)
Infecciones Bacterianas , Humanos , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/uso terapéutico , Bacterias , Penicilinas/uso terapéutico , Imagen Molecular
7.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788505

RESUMEN

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Asunto(s)
Discitis , Osteomielitis , Infecciones Estafilocócicas , Humanos , Ratas , Animales , Discitis/diagnóstico por imagen , Ácido 4-Aminobenzoico , Escherichia coli , Tomografía de Emisión de Positrones/métodos , Infecciones Estafilocócicas/diagnóstico por imagen , Osteomielitis/microbiología , Bacterias , Staphylococcus aureus , Radiofármacos
8.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535945

RESUMEN

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Asunto(s)
Fluorodesoxiglucosa F18 , Trehalosa , Humanos , Celobiosa , Staphylococcus aureus , Tomografía de Emisión de Positrones/métodos , Bacterias
9.
J Hepatol ; 78(2): 238-246, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36368598

RESUMEN

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is prevalent in adults with obesity and can progress to cirrhosis. In a secondary analysis of prospectively acquired data from the multicenter, randomized, placebo-controlled FLINT trial, we investigated the relationship between reduction in adipose tissue compartment volumes and hepatic histologic improvement. METHODS: Adult participants in the FLINT trial with paired liver biopsies and abdominal MRI exams at baseline and end-of-treatment (72 weeks) were included (n = 76). Adipose tissue compartment volumes were obtained using MRI. RESULTS: Treatment and placebo groups did not differ in baseline adipose tissue volumes, or in change in adipose tissue volumes longitudinally (p = 0.107 to 0.745). Deep subcutaneous adipose tissue (dSAT) and visceral adipose tissue volume reductions were associated with histologic improvement in NASH (i.e., NAS [non-alcoholic fatty liver disease activity score] reductions of ≥2 points, at least 1 point from lobular inflammation and hepatocellular ballooning, and no worsening of fibrosis) (p = 0.031, and 0.030, respectively). In a stepwise logistic regression procedure, which included demographics, treatment group, baseline histology, baseline and changes in adipose tissue volumes, MRI hepatic proton density fat fraction (PDFF), and serum aminotransferases as potential predictors, reductions in dSAT and PDFF were associated with histologic improvement in NASH (regression coefficient = -2.001 and -0.083, p = 0.044 and 0.033, respectively). CONCLUSIONS: In adults with NASH in the FLINT trial, those with greater longitudinal reductions in dSAT and potentially visceral adipose tissue volumes showed greater hepatic histologic improvements, independent of reductions in hepatic PDFF. CLINICAL TRIAL NUMBER: NCT01265498. IMPACT AND IMPLICATIONS: Although central obesity has been identified as a risk factor for obesity-related disorders including insulin resistance and cardiovascular disease, the role of central obesity in non-alcoholic steatohepatitis (NASH) warrants further clarification. Our results highlight that a reduction in central obesity, specifically deep subcutaneous adipose tissue and visceral adipose tissue, may be related to histologic improvement in NASH. The findings from this analysis should increase awareness of the importance of lifestyle intervention in NASH for clinical researchers and clinicians. Future studies and clinical practice may design interventions that assess the reduction of deep subcutaneous adipose tissue and visceral adipose tissue as outcome measures, rather than simply weight reduction.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad Abdominal , Hígado/diagnóstico por imagen , Hígado/patología , Fibrosis , Obesidad/complicaciones , Obesidad/patología , Grasa Abdominal/patología , Imagen por Resonancia Magnética/métodos , Tejido Adiposo/patología
10.
Radiology ; 309(3): e222776, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112541

RESUMEN

Background The Liver Imaging Reporting and Data System version 2018 (LI-RADS) treatment response algorithm (TRA) is a high-specificity, lower-sensitivity grading system to diagnose hepatocellular carcinoma (HCC) and recurrence after local-regional therapy. However, the emphasis on specificity can result in disease understaging, potentially leading to poorer posttransplant outcomes. Purpose To determine the negative predictive value (NPV) of pretransplant CT and MRI assessment for viable HCC on a per-patient basis using the LI-RADS TRA, considering explant pathology as the reference standard. Materials and Methods Patient records from 218 consecutive adult patients from a single institution with HCC who underwent liver transplant from January 2011 to November 2017 were retrospectively reviewed. Two readers blinded to the original report reviewed immediate (within 90 days) pretransplant imaging and characterized observations according to the LI-RADS TRA. Based on this, patients with LR-4, LR-5, or LR-TR (treatment response) viable tumors were designated as viable tumor; patients with solely LR-3 or LR-TR equivocal tumors were designated as equivocal; and patients with only LR-TR nonviable lesions were designated as no viable disease. Patients were designated as within or outside the Milan criteria. These per-patient designations were compared with the presence of viable disease at explant pathology. Fisher exact test was used to compare the differences between CT and MRI. Weighted κ values were used to calculate interreader reliability. Results Final study sample consisted of 206 patients (median age, 61 years [IQR, 57-65 years]; 157 male patients and 49 female patients). Per-patient LI-RADS TRA assessment of pretransplant imaging had an NPV of 32% (95% CI: 27, 38) and 26% (95% CI: 20, 33) (readers 1 and 2, respectively) for predicting viable disease. Seventy-five percent (reader 1) and 77% (reader 2) of patients deemed equivocal had residual tumors at explant pathology. Weighted interreader reliability was substantial (κ = 0.62). Conclusion Patient-based stratification of viable, equivocal, and nonviable disease at pretransplant CT or MRI, based on LI-RADS TRA, demonstrated low negative predictive value in excluding HCC at explant pathology. © RSNA, 2023 See also the editorial by Tamir and Tau in this issue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Algoritmos , Tomografía Computarizada por Rayos X/métodos , Sensibilidad y Especificidad , Medios de Contraste
11.
Radiology ; 307(5): e222855, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37367445

RESUMEN

Background Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR-2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results The study population consisted of 484 patients (mean age, 62 years ± 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P = .03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study. © RSNA, 2023 Supplemental material is available for this article. See also the editorials by Johnson and Galgano and Smith in this issue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X , Medios de Contraste , Sensibilidad y Especificidad
12.
J Magn Reson Imaging ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041836

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related death in the United States. However, early response assessment using the current approach of measuring changes in tumor size on computed tomography (CT) or MRI is challenging. PURPOSE: To investigate the feasibility of hyperpolarized (HP) [1-13 C]pyruvate MRI to quantify metabolism in the normal appearing pancreas and PDA, and to assess changes in PDA metabolism following systemic chemotherapy. STUDY TYPE: Prospective. SUBJECTS: Six patients (65.0 ± 7.6 years, 2 females) with locally advanced or metastatic PDA enrolled prior to starting a new line of systemic chemotherapy. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted gradient echo, metabolite-selective 13 C echoplanar imaging. ASSESSMENT: Time-resolved HP [1-13 C]pyruvate data were acquired before (N = 6) and 4-weeks after (N = 3) treatment initiation. Pyruvate metabolism, as quantified by pharmacokinetic modeling and metabolite area-under-the-curve ratios, was assessed in manually segmented PDA and normal appearing pancreas ROIs (N = 5). The change in tumor metabolism before and 4-weeks after treatment initiation was assessed in primary PDA (N = 2) and liver metastases (N = 1), and was compared to objective tumor response defined by response evaluation criteria in solid tumors (RECIST) on subsequent CTs. STATISTICAL TESTS: Descriptive tests (mean ± standard deviation), model fit error for pharmacokinetic rate constants. RESULTS: Primary PDA showed reduced alanine-to-lactate ratios when compared to normal pancreas, due to increased lactate-to-pyruvate or reduced alanine-to-pyruvate ratios. Of the three patients who received HP [1-13 C]pyruvate MRI before and 4-weeks after treatment initiation, one patient had a primary tumor with early metabolic response (increase in alanine-to-lactate) and subsequent partial response according to RECIST, one patient had a primary tumor with relatively stable metabolism and subsequent stable disease by RECIST, and one patient had metastatic PDA with increase in lactate-to-pyruvate of the liver metastases and corresponding progressive disease according to RECIST. DATA CONCLUSION: Altered pyruvate metabolism with increased lactate or reduced alanine was observed in the primary tumor. Early metabolic response assessed at 4-weeks after treatment initiation correlated with subsequent objective tumor response assessed using RECIST. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

13.
Radiographics ; 43(6): e220181, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227944

RESUMEN

Quantitative imaging biomarkers of liver disease measured by using MRI and US are emerging as important clinical tools in the management of patients with chronic liver disease (CLD). Because of their high accuracy and noninvasive nature, in many cases, these techniques have replaced liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. The most commonly evaluated imaging biomarkers are surrogates for liver fibrosis, fat, and iron. MR elastography is now routinely performed to evaluate for liver fibrosis and typically combined with MRI-based liver fat and iron quantification to exclude or grade hepatic steatosis and iron overload, respectively. US elastography is also widely performed to evaluate for liver fibrosis and has the advantage of lower equipment cost and greater availability compared with those of MRI. Emerging US fat quantification methods can be performed along with US elastography. The author group, consisting of members of the Society of Abdominal Radiology (SAR) Liver Fibrosis Disease-Focused Panel (DFP), the SAR Hepatic Iron Overload DFP, and the European Society of Radiology, review the basics of liver fibrosis, fat, and iron quantification with MRI and liver fibrosis and fat quantification with US. The authors cover technical requirements, typical case display, quality control and proper measurement technique and case interpretation guidelines, pitfalls, and confounding factors. The authors aim to provide a practical guide for radiologists interpreting these examinations. © RSNA, 2023 See the invited commentary by Ronot in this issue. Quiz questions for this article are available in the supplemental material.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Sobrecarga de Hierro , Hepatopatías , Humanos , Hierro , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Hígado/diagnóstico por imagen , Hígado/patología , Imagen por Resonancia Magnética/métodos , Hepatopatías/patología , Sobrecarga de Hierro/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Radiólogos , Biomarcadores
14.
Clin Exp Dermatol ; 48(7): 733-743, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36970766

RESUMEN

A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.


Asunto(s)
Diabetes Mellitus , Hipertensión , Animales , Humanos , Masculino , Sodio , Piel , Preparaciones Farmacéuticas
15.
Magn Reson Med ; 88(6): 2609-2620, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35975978

RESUMEN

PURPOSE: To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS: This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS: This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.


Asunto(s)
Próstata , Neoplasias de la Próstata , Anciano , Humanos , Biopsia Guiada por Imagen/métodos , Lactatos , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Próstata/diagnóstico por imagen , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ácido Pirúvico , Ultrasonografía Intervencional/métodos
16.
Eur J Nucl Med Mol Imaging ; 49(11): 3761-3771, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732972

RESUMEN

PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.


Asunto(s)
Metionina , Tomografía de Emisión de Positrones , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Radiometría , Distribución Tisular
17.
J Magn Reson Imaging ; 56(6): 1792-1806, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35420227

RESUMEN

BACKGROUND: Hyperpolarized 13 C MRI quantitatively measures enzyme-catalyzed metabolism in cancer and metabolic diseases. Whole-abdomen imaging will permit dynamic metabolic imaging of several abdominal organs simultaneously in healthy and diseased subjects. PURPOSE: Image hyperpolarized [1-13 C]pyruvate and products in the abdomens of healthy volunteers, overcoming challenges of motion, magnetic field variations, and spatial coverage. Compare hyperpolarized [1-13 C]pyruvate metabolism across abdominal organs of healthy volunteers. STUDY TYPE: Prospective technical development. SUBJECTS: A total of 13 healthy volunteers (8 male), 21-64 years (median 36). FIELD STRENGTH/SEQUENCE: A 3 T. Proton: T1 -weighted spoiled gradient echo, T2 -weighted single-shot fast spin echo, multiecho fat/water imaging. Carbon-13: echo-planar spectroscopic imaging, metabolite-specific echo-planar imaging. ASSESSMENT: Transmit magnetic field was measured. Variations in main magnetic field (ΔB0 ) determined using multiecho proton acquisitions were compared to carbon-13 acquisitions. Changes in ΔB0 were measured after localized shimming. Improvements in metabolite signal-to-noise ratio were calculated. Whole-organ regions of interests were drawn over the liver, spleen, pancreas, and kidneys by a single investigator. Metabolite signals, time-to-peak, decay times, and mean first-order rate constants for pyruvate-to-lactate (kPL ) and alanine (kPA ) conversion were measured in each organ. STATISTICAL TESTS: Linear regression, one-sample Kolmogorov-Smirnov tests, paired t-tests, one-way ANOVA, Tukey's multiple comparisons tests. P ≤ 0.05 considered statistically significant. RESULTS: Proton ΔB0 maps correlated with carbon-13 ΔB0 maps (slope = 0.93, y-intercept = -2.88, R2  = 0.73). Localized shimming resulted in mean frequency offset within ±25 Hz for all organs. Metabolite SNR significantly increased after denoising. Mean kPL and kPA were highest in liver, followed by pancreas, spleen, and kidneys (all comparisons with liver were significant). DATA CONCLUSION: Whole-abdomen coverage with hyperpolarized carbon-13 MRI was feasible despite technical challenges. Multiecho gradient echo 1 H acquisitions accurately predicted chemical shifts observed using carbon-13 spectroscopy. Carbon-13 acquisitions benefited from local shimming. Metabolite energetics in the abdomen compiled for healthy volunteers can be used to design larger clinical trials in patients with metabolic diseases. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Protones , Ácido Pirúvico , Humanos , Masculino , Ácido Pirúvico/metabolismo , Voluntarios Sanos , Estudios Prospectivos , Isótopos de Carbono , Imagen por Resonancia Magnética/métodos , Abdomen/diagnóstico por imagen
18.
Liver Int ; 42(5): 973-983, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35230742

RESUMEN

Hyperpolarized carbon-13 magnetic resonance imaging (HP 13 C MRI) is a recently translated metabolic imaging technique. With dissolution dynamic nuclear polarization (d-DNP), more than 10 000-fold signal enhancement can be readily reached, making it possible to visualize real-time metabolism and specific substrate-to-metabolite conversions in the liver after injecting carbon-13 labelled probes. Increasing evidence suggests that HP 13 C MRI is a potential tool in detecting liver abnormalities, predicting disease progression and monitoring response treatment. In this review, we will introduce the recent progresses of HP 13 C MRI in diffuse liver diseases and liver malignancies and discuss its future opportunities from a clinical perspective, hoping to provide a comprehensive overview of this novel technique in liver diseases and highlight its scientific and clinical potential in the field of hepatology.


Asunto(s)
Hepatopatías , Imagen por Resonancia Magnética , Isótopos de Carbono , Humanos , Hepatopatías/diagnóstico por imagen
19.
AJR Am J Roentgenol ; 218(2): 290-299, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34406059

RESUMEN

BACKGROUND. The value of dual-energy CT (DECT) for bowel wall assessment is increasingly recognized. Although technical improvements reduce peristalsis artifact in conventional CT, the effects of peristalsis on DECT image reconstructions remain poorly studied. OBJECTIVE. The purpose of this study was to evaluate the influence of different DECT scanners and enteric contrast agents on the severity of bowel peristalsis artifact in vitro. METHODS. To simulate bowel peristalsis, a 3-cm-diameter corrugated hollow tube representing the bowel was oscillated constantly in the z-axis within a larger water-filled cylinder. The bowel was serially filled with air, water, and iodinated or experimental dark contrast material and scanned on four different DECT platforms (spectral detector, rapid peak kilovoltage switching, split filter, and dual source) to reconstruct 120-kVp-like and iodine images. Two readers rated each image reconstruction for artifact severity from 0 (none) to 3 (severe) and recorded the degree to which iodine images depicted bowel wall hyperattenuation on 120-kVp-like images as artifactual. Artifact severity scores were compared by ANOVA with Bonferroni correction. RESULTS. Interrater agreement on artifact scores was excellent (intraclass correlation coefficient, 0.82 [95% CI, 0.79-0.84]). For 120-kVp-like images, mean peristalsis artifact scores were lower (all p < .001) for split-filter (1.47) and dual-source (1.86) scanners than for spectral-detector (2.58) and rapid-kilovoltage-switching (2.74) scanners. Compared with those on 120-kVp images, peristalsis artifacts on iodine images were less severe for spectral-detector (score, 1.03; p < .001) and rapid-kilovoltage-switching (2.09; p < .001) systems but more severe for dual-source (2.77; p < .001) and split-filter (2.62; p < .001) systems. Peristalsis artifact was rated less severe with experimental dark bowel contrast medium (score, 1.79) than with other bowel contrast agents (all p < .001). Iodine images helped identify bowel wall hyperattenuation as artifactual in 94.7% of reviewed cases for spectral-detector and 40.7% of cases for rapid-kilovoltage-switching scanners. CONCLUSION. For spectral-detector and rapid-kilovoltage-switching DECT, iodine images minimize peristalsis artifact, but for dual-source and split-filter DECT, mixed 120-kVp-like images are preferred. Compared with iodinated contrast material and water, experimental dark bowel contrast material reduces peristalsis artifact. CLINICAL IMPACT. Knowledge of the preferred images for reducing peristalsis artifact can lessen the effect of peristalsis on clinical DECT interpretation. Dark enteric contrast agents, when they become clinically available, may further reduce the effects of peristalsis.


Asunto(s)
Artefactos , Medios de Contraste , Peristaltismo , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Técnicas In Vitro , Fantasmas de Imagen
20.
Emerg Radiol ; 29(3): 611-614, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35128620

RESUMEN

In this case report, dual-energy CT was critical in the diagnosis of acute mesenteric ischemia by differentiating normal contrast-enhanced bowel and hemorrhagic necrosis. Iodine map showed a segment of small bowel with minimal contrast enhancement, and virtual non-contrast imaging revealed hyperattenuating bowel. This finding changed management for the patient and prevented complications from impending bowel perforation. Histopathological analysis confirmed hemorrhagic necrosis of the bowel segment. In cases of suspected bowel ischemia, dual-energy CT can distinguish bowel wall hemorrhage from contrast enhancement and allow for accurate diagnosis.


Asunto(s)
Yodo , Isquemia Mesentérica , Medios de Contraste , Hemorragia Gastrointestinal , Humanos , Intestino Delgado , Isquemia , Isquemia Mesentérica/diagnóstico por imagen , Necrosis/complicaciones , Necrosis/patología , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA