Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2202125119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862451

RESUMEN

Protein kinase A (PKA) directly phosphorylates aquaporin-2 (AQP2) water channels in renal collecting ducts to reabsorb water from urine for the maintenance of systemic water homeostasis. More than 50 functionally distinct PKA-anchoring proteins (AKAPs) respectively create compartmentalized PKA signaling to determine the substrate specificity of PKA. Identification of an AKAP responsible for AQP2 phosphorylation is an essential step toward elucidating the molecular mechanisms of urinary concentration. PKA activation by several compounds is a novel screening strategy to uncover PKA substrates whose phosphorylation levels were nearly perfectly correlated with that of AQP2. The leading candidate in this assay proved to be an AKAP termed lipopolysaccharide-responsive and beige-like anchor protein (LRBA). We found that LRBA colocalized with AQP2 in vivo, and Lrba knockout mice displayed a polyuric phenotype with severely impaired AQP2 phosphorylation. Most of the PKA substrates other than AQP2 were adequately phosphorylated by PKA in the absence of LRBA, demonstrating that LRBA-anchored PKA preferentially phosphorylated AQP2 in renal collecting ducts. Furthermore, the LRBA-PKA interaction, rather than other AKAP-PKA interactions, was robustly dissociated by PKA activation. AKAP-PKA interaction inhibitors have attracted attention for their ability to directly phosphorylate AQP2. Therefore, the LRBA-PKA interaction is a promising drug target for the development of anti-aquaretics.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Acuaporina 2 , Agua Corporal , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Agua Corporal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Homeostasis , Ratones , Fosforilación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38507046

RESUMEN

Age-related macular degeneration (AMD) is the leading sight-threatening disease in developed countries. On the other hand, recent studies indicated an ethnic variation in the phenotype of AMD. For example, several reports demonstrated that the incidence of drusen in AMD patients is less in Asians compared to Caucasians though the reason has not been clarified yet. In the last decades, several genome association studies have disclosed many susceptible genes of AMD and revealed that the association strength of some genes was different among races and AMD phenotypes. In this review article, the essential findings of the clinical studies and genome association studies for the most significant genes CFH and ARMS2/HTRA1 in AMD of different races are summarized, and theoretical hypotheses about the molecular mechanisms underlying the ethnic variation in the AMD manifestation mainly focused on those genes between Caucasians and Asians are discussed.

3.
J Physiol ; 601(23): 5437-5451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37860942

RESUMEN

Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.


Asunto(s)
Acuaporina 2 , Túbulos Renales Colectores , Ratones , Animales , Acuaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolisacáridos/metabolismo , Transporte de Proteínas , Vasopresinas/farmacología , Vasopresinas/metabolismo , Endosomas/metabolismo , Antagonistas de los Receptores de Hormonas Antidiuréticas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Agua/metabolismo , Fosforilación
4.
Hepatology ; 73(6): 2527-2545, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33576020

RESUMEN

BACKGROUND AND AIMS: Antifibrotic therapy remains an unmet medical need in human chronic liver disease. We report the antifibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH AND RESULTS: Cygb-deficient mice that had bile duct ligation-induced liver cholestasis or choline-deficient amino acid-defined diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis, and reactive oxygen species (ROS) formation. All of these manifestations were attenuated in Cygb-overexpressing mice. We produced hexa histidine-tagged recombinant human CYGB (His-CYGB), traced its biodistribution, and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes through a clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type 1 alpha 1 production and α-smooth muscle actin expression. Replacement the iron center of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-ß secretion by HSCs that partly contributed to its antifibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis, and oxidative cell damage in mice administered TAA or DDC mice without adverse effects. RNA-sequencing analysis revealed the down-regulation of inflammation- and fibrosis-related genes and the up-regulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localized to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in chimeric mice with humanized livers. CONCLUSIONS: His-CYGB could have antifibrotic clinical applications for human chronic liver diseases.


Asunto(s)
Citoglobina/metabolismo , Hígado Graso , Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Descubrimiento de Drogas , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Ratones , Ratones Noqueados , Sustancias Protectoras/farmacología , Proteínas Recombinantes/farmacología , Resultado del Tratamiento
5.
Biochem Biophys Res Commun ; 534: 624-631, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220930

RESUMEN

In the present study, we demonstrated that there is a direct relationship between scratching behaviors induced by itch and functional changes in the brain reward system. Using a conditional place preference test, the rewarding effect was clearly evoked by scratching under both acute and chronic itch stimuli. The induction of ΔFosB, a member of the Fos family of transcription factors, was observed in dopamine transporter (DAT)-positive dopamine neurons in the ventral tegmental area (VTA) of mice suffering from a chronic itch sensation. Based on a cellular analysis of scratching-activated neurons, these neurons highly expressed tyrosine hydroxylase (TH) and DAT genes in the VTA. Furthermore, in an in vivo microdialysis study, the levels of extracellular dopamine in the nucleus accumbens (NAcc) were significantly increased by transient scratching behaviors. To specifically suppress the mesolimbic dopaminergic pathway using pharmacogenetics, we used the TH-cre/hM4Di mice. Pharmacogenetic suppression of mesolimbic dopaminergic neurons significantly decreased scratching behaviors. Under the itch condition with scratching behaviors restricted by an Elizabethan collar, the induction of ΔFosB was found mostly in corticotropin-releasing hormone (CRH)-containing neurons of the hypothalamic paraventricular nucleus (PVN). These findings suggest that repetitive abnormal scratching behaviors under acute and chronic itch stimuli may activate mesolimbic dopamine neurons along with pleasant emotions, while the restriction of such scratching behaviors may initially induce the activation of PVN-CRH neurons associated with stress.


Asunto(s)
Prurito/fisiopatología , Prurito/psicología , Recompensa , Área Tegmental Ventral/fisiopatología , Enfermedad Aguda , Animales , Conducta Animal/fisiología , Enfermedad Crónica , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Histamina/administración & dosificación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/fisiopatología , Pruebas de Farmacogenómica , Cloruro de Picrilo/administración & dosificación , Prurito/genética , Tirosina 3-Monooxigenasa/genética
6.
Inflamm Res ; 70(5): 539-541, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33811487

RESUMEN

OBJECTIVE: Histamine derived from mast cells and basophils plays important roles in inducing allergic symptoms. Although T cells also produce histamine, the involvement of the histamine produced from T cells has remained enigmatic. We sought to reveal the roles of T helper 2 (Th2) cell-derived histamine in nasal allergic disorders. METHODS: The histamine production from Th2 cells was measured by EIA. The mRNA expression of histidine decarboxylase (HDC) was measured by real-time PCR. To investigate the roles of Th2 cell-derived histamine in vivo, we analyzed an antigen-specific Th2 cell transfer mouse model. RESULTS: Th2 cells produced histamine by T cell receptor stimulation, and these properties were specific for Th2 cells, but not Th1 cells and naïve CD4 T cells. The histamine produced from Th2 cells was involved in the infiltrations of Th2 cells in response to antigen exposure. CONCLUSION: These results suggest that Th2 cell-derived histamine play important roles in nasal allergic disorders.


Asunto(s)
Histamina/inmunología , Mucosa Nasal/inmunología , Rinitis Alérgica/inmunología , Células Th2/inmunología , Alérgenos/inmunología , Animales , Movimiento Celular , Histidina Descarboxilasa/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina/inmunología , Células Th2/fisiología , Células Th2/trasplante
7.
Biochem Biophys Res Commun ; 524(1): 1-7, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31898971

RESUMEN

The tumor suppressor CYLD negatively regulates polyubiquitination-dependent cellular signaling such as nuclear factor (NF)-κB signaling. In addition to CYLD, multiple deubiquitinating enzymes (DUBs) are also involved in the regulation of this signaling pathway, and distinct role of CYLD is yet to be clarified. Here, we identified a small chemical named Subquinocin that inhibited the DUB activity of recombinant CYLD using a wheat cell-free protein synthesis and an AlphaScreen technology. In cells, Subquinocin increased the polyubiquitination of NEMO and RIP1 and enhanced NF-κB activation. Modeling and mutation analyses indicated that Subquinocin interacted with Y940 in CYLD, which locates close to catalytic center of CYLD, and is conserved among the USP-family DUBs. Further biochemical evaluation revealed that Subquinocin inhibited USP-family DUBs, but not other family DUBs including OTU. Although Subquinocin showed a broad specificity toward USP-family DUBs, the inhibitory effect of Subquinocin on NF-κB signaling was negligible in CYLD-KO cells, indicating that CYLD is a major target of Subquinocin on the suppression of NF-κB signaling. In conclusion, Subquinocin identified here is a useful tool to analyze the signal transduction mediated by USP-family DUBs.


Asunto(s)
Antineoplásicos/química , Enzima Desubiquitinante CYLD/antagonistas & inhibidores , Inhibidores Enzimáticos/química , FN-kappa B/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Glutatión Transferasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación/efectos de los fármacos
8.
Int J Mol Sci ; 21(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403254

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin ligase composed of the Heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein (HOIP), and Shank-associated RH domain interactor (SHARPIN) subunits. LUBAC specifically generates the N-terminal Met1-linked linear ubiquitin chain and regulates acquired and innate immune responses, such as the canonical nuclear factor-κB (NF-κB) and interferon antiviral pathways. Deubiquitinating enzymes, OTULIN and CYLD, physiologically bind to HOIP and control its function by hydrolyzing the linear ubiquitin chain. Moreover, proteins containing linear ubiquitin-specific binding domains, such as NF-κB-essential modulator (NEMO), optineurin, A20-binding inhibitors of NF-κB (ABINs), and A20, modulate the functions of LUBAC, and the dysregulation of the LUBAC-mediated linear ubiquitination pathway induces cancer and inflammatory, autoimmune, and neurodegenerative diseases. Therefore, inhibitors of LUBAC would be valuable to facilitate investigations of the molecular and cellular bases for LUBAC-mediated linear ubiquitination and signal transduction, and for potential therapeutic purposes. We identified and characterized α,ß-unsaturated carbonyl-containing chemicals, named HOIPINs (HOIP inhibitors), as LUBAC inhibitors. We summarize recent advances in elucidations of the pathophysiological functions of LUBAC-mediated linear ubiquitination and identifications of its regulators, toward the development of LUBAC inhibitors.


Asunto(s)
Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Animales , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Transducción de Señal , Ubiquitinación
9.
Biochem Biophys Res Commun ; 509(3): 700-706, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30611571

RESUMEN

Nuclear factor-κB (NF-κB) is a crucial transcription factor family involved in the regulation of immune and inflammatory responses and cell survival. The linear ubiquitin chain assembly complex (LUBAC), composed of the HOIL-1L, HOIP, and SHARPIN subunits, specifically generates Met1-linked linear ubiquitin chains through the ubiquitin ligase activity in HOIP, and activates the NF-κB pathway. We recently identified a chemical inhibitor of LUBAC, which we named HOIPIN-1 (HOIP inhibitor-1). To improve the potency of HOIPIN-1, we synthesized 7 derivatives (HOIPIN-2∼8), and analyzed their effects on LUBAC and NF-κB activation. Among them, HOIPIN-8 suppressed the linear ubiquitination activity by recombinant LUBAC at an IC50 value of 11 nM, corresponding to a 255-fold increase over that of HOIPIN-1. Furthermore, as compared with HOIPIN-1, HOIPIN-8 showed 10-fold and 4-fold enhanced inhibitory activities on LUBAC- and TNF-α-induced NF-κB activation respectively, without cytotoxicity. These results indicated that HOIPIN-8 is a powerful tool to explore the physiological functions of LUBAC.


Asunto(s)
Antiinflamatorios/farmacología , FN-kappa B/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Células A549 , Antiinflamatorios/química , Citocinas/antagonistas & inhibidores , Citocinas/inmunología , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , FN-kappa B/inmunología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción/inmunología , Ubiquitina/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación/efectos de los fármacos
12.
Genes Cells ; 18(9): 798-809, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23803178

RESUMEN

The unfolded protein response (UPR) is an adaptive stress response that responds to the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) and that adjusts the protein-folding capacity to the needs of the cell. Perturbation of cellular lipids also activates the UPR. Lipid-induced UPR has attracted much attention because it is associated with the pathology of some metabolic diseases. However, how the lipid-induced UPR is activated remains unclear. We previously showed that palmitic acid treatment or knockdown of stearoyl-CoA desaturase in HeLa cells promotes membrane lipid saturation and activates the UPR. In this study, we compared UPR activation by membrane lipid saturation with UPR activation by conventional ER stressors that cause the accumulation of unfolded proteins such as tunicamycin and thapsigargin. Membrane lipid saturation induced autophosphorylation of inositol-requiring 1α (IRE1α) and protein kinase RNA-like ER kinase, but not the conversion of activating transcription factor-6α to the active form. A conventional ER stressor induced clustering of fluorescently tagged IRE1α fusion protein, but palmitic acid treatment did not, suggesting that IRE1α was activated without large cluster formation by membrane lipid saturation. Together, these results suggest membrane lipid saturation, and unfolded proteins activate the UPR through different mechanisms.


Asunto(s)
Endorribonucleasas/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/metabolismo , Estrés del Retículo Endoplásmico , Células HeLa , Humanos , Ácido Palmítico/farmacología , Desplegamiento Proteico/efectos de los fármacos , Tapsigargina/farmacología , Tunicamicina/farmacología , eIF-2 Quinasa/metabolismo
13.
Biochem Biophys Res Commun ; 433(4): 426-31, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23541586

RESUMEN

IRE1α is an ER-located transmembrane RNase whose activation leads to the production of the transcriptional factor, XBP1. Recently, many studies report that IRE1α-XBP1 pathway has novel and significant roles in placenta. However, its molecular details have been still unknown. To address this point, we have focused on the molecular linkage between IRE1α-XBP1 pathway and Cts7 and Cts8, which are essential cathepsins for placenta formation. In cellular model, this pathway positively contributed to their expression at transcriptional level. In addition, the disruption of IRE1α or XBP1 in animal model significantly attenuated their transcripts in placenta. These results indicated that IRE1α-XBP1 pathway function as a specific program supporting the placenta formation by ensuring the moderate expression of specific subset of placental cathepsins.


Asunto(s)
Catepsinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Placenta/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Catepsinas/genética , Línea Celular , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Femenino , Luciferasas/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Placenta/citología , Embarazo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética , Transcripción Genética , Transfección , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box
14.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829909

RESUMEN

Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio-temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an ovarian tumor protease (OTU) family DUB, has an N-terminal-disordered alanine-, proline-, glycine-rich region (APGR), a catalytic OTU domain, and a ubiquitin-interacting motif (UIM). OTUD1 preferentially hydrolyzes lysine-63-linked ubiquitin chains in vitro; however, recent studies indicate that OTUD1 cleaves various ubiquitin linkages, and is involved in the regulation of multiple cellular functions. Thus, OTUD1 predominantly functions as a tumor suppressor by targeting p53, SMAD7, PTEN, AKT, IREB2, YAP, MCL1, and AIF. Furthermore, OTUD1 regulates antiviral signaling, innate and acquired immune responses, and cell death pathways. Similar to Nrf2, OTUD1 contains a KEAP1-binding ETGE motif in its APGR and regulates the reactive oxygen species (ROS)-mediated oxidative stress response and cell death. Importantly, in addition to its association with various cancers, including multiple myeloma, OTUD1 is involved in acute graft-versus-host disease and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. Thus, OTUD1 is an important DUB as a therapeutic target for a variety of diseases.

15.
Sci Rep ; 13(1): 9471, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301918

RESUMEN

Recent studies have shown that some people claim that their skin gases provoke allergy-like reactions in people in their near vicinity. Such a phenomenon or symptom is called 'people allergic to me (PATM)'. Although numerous people suffer from PATM, the actual conditions are unknown. The aim of this study was to investigate the characteristics of human skin profiles in patients with PATM by measuring the dermal emission fluxes of 75 skin gases using passive flux sampler and gas chromatography/mass spectrometry. We found common features in the human skin gas profiles of 20 subjects with PATM, with a significant difference from those of 24 non-PATM subjects: greater emissions of petrochemicals, organosulfur compounds, and some aldehydes and lower emissions of aroma compounds and others. The ratio of toluene to benzaldehyde is considered a vital sign that suggests the fundamental of PATM. These findings indicate that PATM is a medically unexplained phenomenon or symptom worthy of further research, which requires an interdisciplinary approach.


Asunto(s)
Hipersensibilidad , Compuestos Orgánicos Volátiles , Humanos , Piel/química , Gases/análisis , Aldehídos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis
16.
Front Mol Biosci ; 10: 1089213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726375

RESUMEN

In neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases.

17.
PLoS One ; 18(6): e0287545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352136

RESUMEN

BACKGROUND: Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNß), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNß than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNß overproduction during optineurin deficiency both in vitro and in vivo. METHODS: To investigate the mechanism of IFNß overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS: IFNß overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNß overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNß overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION: Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNß overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Ciclo Celular , Proteínas de Transporte de Membrana , Virosis , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Inmunidad Innata , Interferón beta/genética , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones Noqueados
18.
J Cell Biol ; 179(1): 75-86, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17923530

RESUMEN

Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstrate that, upon ER stress, Ire1 clusters and actually interacts with unfolded proteins. Ire1 mutations that affect these phenomena reveal that Ire1 is activated via two steps, both of which are ER stress regulated, albeit in different ways. In the first step, BiP dissociation from Ire1 leads to its cluster formation. In the second step, direct interaction of unfolded proteins with the CSSR orients the cytosolic effector domains of clustered Ire1 molecules.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/fisiología , Activación Enzimática , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/química , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química
19.
Nucleic Acids Res ; 38(18): 6265-73, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20507909

RESUMEN

IRE1α is an endoplasmic reticulum (ER)-located transmembrane RNase that plays a central role in the ER stress response. Upon ER stress, IRE1α is activated and cleaves specific exon-intron sites in the mRNA encoding the transcription factor X-box-binding protein 1 (XBP1). In addition, previous studies allow us to predict that IRE1α targets several RNAs other than the XBP1. In fact, we have identified CD59 mRNA as a cleavage target of IRE1α. However, it is not yet clear how IRE1α recognizes and cleaves target RNAs. To address this question, we devised a unique method that combines an in vitro cleavage assay with an exon microarray analysis, and performed genome-wide screening for IRE1α cleavage targets. We identified 13 novel mRNAs as candidate IRE1α cleavage targets. Moreover, an analysis of the novel cleavage sites revealed a consensus sequence (CUGCAG) which, when accompanied by a stem-loop structure, is essential for IRE1α-mediated cleavage. The sequence and structure were also conserved in the known IRE1α cleavage targets, CD59 and XBP1. These findings provide the important clue to understanding the molecular mechanisms by which IRE1α recognizes and cleaves target RNAs.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Secuencia de Bases , Línea Celular , Secuencia de Consenso , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954242

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a predominant component of inclusions in the brains and spines of patients with amyotrophic lateral sclerosis (ALS). The progressive accumulation of inclusions leads to proteinopathy in neurons. We have previously shown that Met1(M1)-linked linear ubiquitin, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), is colocalized with TDP-43 inclusions in neurons from optineurin-associated familial and sporadic ALS patients, and affects NF-κB activation and apoptosis. To examine the effects of LUBAC-mediated linear ubiquitination on TDP-43 proteinopathies, we performed cell biological analyses using full-length and truncated forms of the ALS-associated Ala315→Thr (A315T) mutant of TDP-43 in Neuro2a cells. The truncated A315T mutants of TDP-43, which lack a nuclear localization signal, efficiently generated cytoplasmic aggregates that were colocalized with multiple ubiquitin chains such as M1-, Lys(K)48-, and K63-chains. Genetic ablation of HOIP or treatment with a LUBAC inhibitor, HOIPIN-8, suppressed the cytoplasmic aggregation of A315T mutants of TDP-43. Moreover, the enhanced TNF-α-mediated NF-κB activity by truncated TDP-43 mutants was eliminated in the presence of HOIPIN-8. These results suggest that multiple ubiquitinations of TDP-43 including M1-ubiquitin affect protein aggregation and inflammatory responses in vitro, and therefore, LUBAC inhibition ameliorates TDP-43 proteinopathy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Hidrocarburos Aromáticos , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA