Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37220746

RESUMEN

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Complemento C5/metabolismo , Fagocitos/metabolismo
2.
Nat Immunol ; 20(5): 559-570, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30996332

RESUMEN

The C-type lectin receptor-Syk (spleen tyrosine kinase) adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human deficiency in CARD9 causes susceptibility to fungus-specific, CNS-targeted infection. CARD9 promotes the recruitment of neutrophils to the fungus-infected CNS, which mediates fungal clearance. In the present study we investigated host and pathogen factors that promote protective neutrophil recruitment during invasion of the CNS by Candida albicans. The cytokine IL-1ß served an essential function in CNS antifungal immunity by driving production of the chemokine CXCL1, which recruited neutrophils expressing the chemokine receptor CXCR2. Neutrophil-recruiting production of IL-1ß and CXCL1 was induced in microglia by the fungus-secreted toxin Candidalysin, in a manner dependent on the kinase p38 and the transcription factor c-Fos. Notably, microglia relied on CARD9 for production of IL-1ß, via both transcriptional regulation of Il1b and inflammasome activation, and of CXCL1 in the fungus-infected CNS. Microglia-specific Card9 deletion impaired the production of IL-1ß and CXCL1 and neutrophil recruitment, and increased fungal proliferation in the CNS. Thus, an intricate network of host-pathogen interactions promotes antifungal immunity in the CNS; this is impaired in human deficiency in CARD9, which leads to fungal disease of the CNS.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Candidiasis/inmunología , Quimiocina CXCL1/inmunología , Interleucina-1beta/inmunología , Microglía/inmunología , Neutrófilos/inmunología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/microbiología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Candidiasis/genética , Candidiasis/microbiología , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Microglía/microbiología , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología
3.
Nat Immunol ; 23(7): 997-999, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761087

Asunto(s)
Candida , Células Th17
4.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38810185

RESUMEN

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Asunto(s)
Proteína AIRE , Interferón gamma , Inhibidores de las Cinasas Janus , Poliendocrinopatías Autoinmunes , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Proteína AIRE/deficiencia , Proteína AIRE/genética , Proteína AIRE/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Quimiocina CXCL9/genética , Interferón gamma/genética , Interferón gamma/inmunología , Inhibidores de las Cinasas Janus/uso terapéutico , Ratones Noqueados , Nitrilos/uso terapéutico , Poliendocrinopatías Autoinmunes/genética , Poliendocrinopatías Autoinmunes/tratamiento farmacológico , Poliendocrinopatías Autoinmunes/inmunología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Pirimidinas/uso terapéutico , Linfocitos T/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proyectos Piloto , Modelos Animales de Enfermedad , Niño , Adolescente , Persona de Mediana Edad
5.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147542

RESUMEN

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Asunto(s)
Fenómenos Biológicos , Plantones , Plantones/metabolismo , Hidroponía/métodos , Raíces de Plantas/metabolismo
6.
Blood ; 143(16): 1628-1645, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38227935

RESUMEN

ABSTRACT: CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Adulto , Humanos , Antifúngicos/uso terapéutico , Disbiosis/etiología , Daunorrubicina , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Homeostasis
7.
Pharmacol Res ; 198: 106994, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972721

RESUMEN

The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction. Studies utilizing these techniques have begun to provide us with a deeper understanding of how the interaction between the intestinal microbes and their host affects the cardiovascular system in health and disease. Within the framework of a multiomics network approach, we highlight here how tryptophan metabolism may orchestrate the host-microbes interaction in cardiovascular diseases and the implications for precision medicine and therapeutics, including nutritional interventions.


Asunto(s)
Enfermedades Cardiovasculares , Triptófano , Humanos , Genómica/métodos , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos
8.
J Clin Immunol ; 42(2): 336-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34791587

RESUMEN

BACKGROUND: CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE: We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS: The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS: CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.


Asunto(s)
Candidiasis Mucocutánea Crónica , Alelos , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Dosificación de Gen , Homocigoto , Humanos , Ratones , Fenotipo
9.
J Clin Gastroenterol ; 53(2): 89-101, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575637

RESUMEN

Acute liver failure is a rare hepatic emergent situation that affects primarily young people and has often a catastrophic or even fatal outcome. Definition of acute liver failure has not reached a universal consensus and the interval between the appearance of jaundice and hepatic encephalopathy for the establishment of the acute failure is a matter of debate. Among the wide variety of causes, acetaminophen intoxication in western societies and viral hepatitis in the developing countries rank at the top of the etiology list. Identification of the clinical appearance and initial management for the stabilization of the patient are of vital significance. Further advanced therapies, that require intensive care unit, should be offered. The hallmark of treatment for selected patients can be orthotopic liver transplantation. Apart from well-established treatments, novel therapies like hepatocyte or stem cell transplantation, additional new therapeutic strategies targeting acetaminophen intoxication and/or hepatic encephalopathy are mainly experimental, and some of them do not belong, yet, to clinical practice. For clinicians, it is substantial to have the alertness to timely identify the patient and transfer them to a specialized center, where more treatment opportunities are available.


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Fallo Hepático Agudo/terapia , Humanos , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/fisiopatología , Trasplante de Hígado , Selección de Paciente
10.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261761

RESUMEN

This work explores for the first time the potential contribution of microRNAs (miRNAs) to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD) and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone (SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively, in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid metabolism, CNS development and homeostasis, and neuropathological processes, highlighting region- and disease-specific profiles of miRNA expression. Moreover, by using a computational analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases. These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the aim of developing effective treatments.


Asunto(s)
Cuerpo Estriado/metabolismo , Gangliosidosis GM2/genética , Redes Reguladoras de Genes , Ventrículos Laterales/metabolismo , MicroARNs/genética , Transcriptoma , Animales , Gangliosidosis GM2/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética
11.
Mediators Inflamm ; 2018: 1601486, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670460

RESUMEN

Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis.


Asunto(s)
Fibrosis Quística/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Humanos , Indoles/metabolismo , Lactobacillus/metabolismo
12.
Mediators Inflamm ; 2018: 6195958, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692681

RESUMEN

Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-γ and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation.


Asunto(s)
Autofagia/fisiología , Fagocitosis/fisiología , Animales , Humanos , Interferón gamma/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Fagocitos/metabolismo , Fagocitos/fisiología
13.
Ther Adv Gastrointest Endosc ; 17: 26317745241251708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800496

RESUMEN

After failed biliary cannulation via standard endoscopic retrograde cholangiography approach, endoscopic-ultrasound-based rendezvous-endoscopic retrograde cholangiography (EUS-RV-ERC) is a valid alternative. One of the challenging factors in this setting is the management of the guidewire. Here, we propose a method, where a slim endoscope is used to stabilize the guidewire and optimize wire manipulation in a patient who underwent EUS-RV-ERC via a transgastric approach. This was executed in a patient suffering from severe alcoholic pancreatitis presented with a severely narrowed duodenum due to extrinsic compression and inflammation in the setting of cholangitis Tokyo Grade III.

14.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719750

RESUMEN

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Asunto(s)
Candida albicans , Enfermedad Celíaca , Homeostasis , Mastocitos , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/metabolismo , Humanos , Candida albicans/patogenicidad , Candida albicans/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Microbioma Gastrointestinal/inmunología , Disbiosis/inmunología , Candidiasis/inmunología , Candidiasis/microbiología , Animales , Candida/patogenicidad , Candida/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo
15.
J Exp Med ; 221(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861030

RESUMEN

Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.


Asunto(s)
Mutación con Ganancia de Función , Imiquimod , Factor de Transcripción STAT3 , Células Th17 , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Células Th17/inmunología , Ratones , Humanos , Imiquimod/farmacología , Piel/patología , Piel/metabolismo , Piel/inmunología , Interleucina-22 , Dermatitis/inmunología , Dermatitis/genética , Dermatitis/patología , Dermatitis/metabolismo , Ratones Endogámicos C57BL , Interleucinas/genética , Interleucinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/inmunología , Inflamación/patología
16.
Glob Chall ; 7(8): 2300002, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37635699

RESUMEN

The release of metformin, a drug used in the treatment of cancer and diabetes, from poly(2-hydroxyethyl methacrylate), pHEMA, hydrogel-based microneedle patches is demonstrated in vitro. Tuning the composition of the pHEMA hydrogels enables preparation of robust microneedle patches with mechanical properties such that they would penetrate skin (insertion force of a single microneedle to be ≈40 N). Swelling experiments conducted at 20, 35, and 60 °C show temperature-dependent degrees of swelling and diffusion kinetics. Drug release from the pHEMA hydrogel-based microneedles is fitted to various models (e.g., zero order, first order, second order). Such pHEMA microneedles have potential application for transdermal delivery of metformin for the treatment of aging, cancer, diabetes, etc.

17.
Aliment Pharmacol Ther ; 57(1): 103-116, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36307899

RESUMEN

BACKGROUND: Immunosuppressed patients with inflammatory bowel disease (IBD) experience increased risk of vaccine-preventable diseases such as COVID-19. AIMS: To assess humoral and cellular immune responses following SARS-CoV-2 booster vaccination in immunosuppressed IBD patients and healthy controls. METHODS: In this prospective, multicentre, case-control study, 139 IBD patients treated with biologics and 110 healthy controls were recruited. Serum anti-SARS-CoV-2 spike IgG concentrations were measured 2-16 weeks after receiving a third mRNA vaccine dose. The primary outcome was to determine if humoral immune responses towards booster vaccines differ in IBD patients under anti-TNF versus non-anti-TNF therapy and healthy controls. Secondary outcomes were antibody decline, impact of previous infection and SARS-CoV-2-targeted T cell responses. RESULTS: Anti-TNF-treated IBD patients showed reduced anti-spike IgG concentrations (geometric mean 2357.4 BAU/ml [geometric SD 3.3]) when compared to non-anti-TNF-treated patients (5935.7 BAU/ml [3.9]; p < 0.0001) and healthy controls (5481.7 BAU/ml [2.4]; p < 0.0001), respectively. In multivariable modelling, prior infection (geometric mean ratio 2.00 [95% CI 1.34-2.90]) and vaccination with mRNA-1273 (1.53 [1.01-2.27]) increased antibody concentrations, while anti-TNF treatment (0.39 [0.28-0.54]) and prolonged time between vaccination and antibody measurement (0.72 [0.58-0.90]) decreased anti-SARS-CoV-2 spike antibodies. Antibody decline was comparable in IBD patients independent of anti-TNF treatment and antibody concentrations could not predict breakthrough infections. Cellular and humoral immune responses were uncoupled, and more anti-TNF-treated patients than healthy controls developed inadequate T cell responses (15/73 [20.5%] vs 2/100 [2.0%]; p = 0.00031). CONCLUSIONS: Anti-TNF-treated IBD patients have impaired humoral and cellular immunogenicity following SARS-CoV-2 booster vaccination. Fourth dose administration may be beneficial for these patients.


Asunto(s)
Productos Biológicos , COVID-19 , Enfermedades Inflamatorias del Intestino , Humanos , Productos Biológicos/uso terapéutico , SARS-CoV-2 , Vacunas contra la COVID-19 , Linfocitos T , Estudios de Casos y Controles , Estudios Prospectivos , COVID-19/prevención & control , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Anticuerpos Antivirales , Vacunas de ARNm , Inmunoglobulina G
18.
Adv Sci (Weinh) ; 10(14): e2206409, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935365

RESUMEN

Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.


Asunto(s)
Arabidopsis , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Plantas , Arabidopsis/fisiología , Electrónica , Bombas Iónicas
19.
Front Immunol ; 14: 1133387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875114

RESUMEN

Introduction: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and poikiloderma in association with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP) are rare inherited syndromes resulting from biallelic pathogenic variants in AIRE and heterozygous pathogenic variants in FAM111B, respectively. The clinical diagnosis of APECED and POIKTMP rely on the development of two or more characteristic disease manifestations that define the corresponding syndromes. We discuss the shared and distinct clinical, radiographic, and histological features between APECED and POIKTMP presented in our patient case and describe his treatment response to azathioprine for POIKTMP-associated hepatitis, myositis, and pneumonitis. Methods: Through informed consent and enrollment onto IRB-approved protocols (NCT01386437, NCT03206099) the patient underwent a comprehensive clinical evaluation at the NIH Clinical Center alongside exome sequencing, copy number variation analysis, autoantibody surveys, peripheral blood immunophenotyping, and salivary cytokine analyses. Results: We report the presentation and evaluation of a 9-year-old boy who was referred to the NIH Clinical Center with an APECED-like clinical phenotype that included the classic APECED dyad of CMC and hypoparathyroidism. He was found to meet clinical diagnostic criteria for POIKTMP featuring poikiloderma, tendon contractures, myopathy, and pneumonitis, and exome sequencing revealed a de novo c.1292T>C heterozygous pathogenic variant in FAM111B but no deleterious single nucleotide variants or copy number variants in AIRE. Discussion: This report expands upon the available genetic, clinical, autoantibody, immunological, and treatment response information on POIKTMP.


Asunto(s)
Variaciones en el Número de Copia de ADN , Poliendocrinopatías Autoinmunes , Masculino , Humanos , Autoanticuerpos , Azatioprina , Fenotipo , Proteínas de Ciclo Celular
20.
Aliment Pharmacol Ther ; 58(7): 678-691, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37571863

RESUMEN

BACKGROUND: Vaccine-elicited immune responses are impaired in patients with inflammatory bowel disease (IBD) treated with anti-TNF biologics. AIMS: To assess vaccination efficacy against the novel omicron sublineages BQ.1.1 and XBB.1.5 in immunosuppressed patients with IBD. METHODS: This prospective multicentre case-control study included 98 biologic-treated patients with IBD and 48 healthy controls. Anti-spike IgG concentrations and surrogate neutralisation against SARS-CoV-2 wild-type, BA.1, BA.5, BQ.1.1, and XBB.1.5 were measured at two different time points (2-16 weeks and 22-40 weeks) following third dose vaccination. Surrogate neutralisation was based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Primary outcome was surrogate neutralisation against tested SARS-CoV-2 sublineages. Secondary outcomes were proportions of participants with insufficient surrogate neutralisation, impact of breakthrough infection, and correlation of surrogate neutralisation with anti-spike IgG concentration. RESULTS: Surrogate neutralisation against all tested sublineages was reduced in patients with IBD who were treated with anti-TNF biologics compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.001) at visit 1. Anti-TNF therapy (odds ratio 0.29 [95% CI 0.19-0.46]) and time since vaccination (0.85 [0.72-1.00]) were associated with low, and mRNA-1273 vaccination (1.86 [1.12-3.08]) with high wild-type surrogate neutralisation in a ß-regression model. Accordingly, higher proportions of patients treated with anti-TNF biologics had insufficient surrogate neutralisation against omicron sublineages at visit 1 compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.015). Surrogate neutralisation against all tested sublineages decreased over time but was increased by breakthrough infection. Anti-spike IgG concentrations correlated with surrogate neutralisation. CONCLUSIONS: Patients with IBD who are treated with anti-TNF biologics show impaired neutralisation against novel omicron sublineages BQ.1.1 and XBB.1.5 and may benefit from prioritisation for future variant-adapted vaccines.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Humanos , Vacunas contra la COVID-19/uso terapéutico , SARS-CoV-2 , Estudios de Casos y Controles , Estudios Prospectivos , COVID-19/prevención & control , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Infección Irruptiva , Inmunoglobulina G , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA