RESUMEN
KEY MESSAGE: The hvbe2a mutations restore the starch-deficient phenotype caused by the hvisa1 and hvflo6 mutations in barley endosperm. The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Endospermo , Hordeum , Isoamilasa , Mutación , Fenotipo , Almidón , Hordeum/genética , Hordeum/enzimología , Hordeum/crecimiento & desarrollo , Almidón/metabolismo , Endospermo/genética , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Isoamilasa/genética , Isoamilasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
KEY MESSAGE: Barley double mutants in two genes involved in starch granule morphology, HvFLO6 and HvISA1, had impaired starch accumulation and higher grain sugar levels than either single mutant. Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.
Asunto(s)
Hordeum , Oryza , Endospermo/genética , Endospermo/metabolismo , Hordeum/genética , Azúcares , Fitomejoramiento , Almidón/metabolismo , Glucanos/metabolismo , Fenotipo , Mutación , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Glutinous rice accumulates amylose-free starch and is utilized for rice cakes and crackers, owing to the loss of the Waxy gene which encodes granule-bound starch synthase I (GBSSI). Starch synthase IIa (SSIIa) elongates amylopectin chains with a degree of polymerization (DP) of 6-12 to 13-24 and greatly influences starch properties. To elucidate the relationship between the branch length of amylopectin and the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice, three allelic near isogenic lines with high, low, or no SSIIa activity were generated (designated as SS2a wx, ss2aL wx, and ss2a wx, respectively). Chain length distribution analyses revealed that ss2a wx exhibited the highest short chain (DP < 12) number and lowest gelatinization temperature, whereas SS2a wx showed the opposite results. Gel filtration chromatography showed that the three lines contained essentially no amylose. Viscoelasticity analyses of rice cakes stored at low temperature for different durations revealed that ss2a wx maintained softness and elasticity for up to 6 days, while SS2a wx hardened within 6 h. Sensory evaluation was consistent with mechanical evaluation. The relationship of amylopectin structure with the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice is discussed.
Asunto(s)
Amilopectina , Oryza , Amilopectina/química , Oryza/genética , Alelos , Almidón/química , Proteínas de Plantas/genética , Amilosa/químicaRESUMEN
KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Asunto(s)
Oryza/enzimología , Almidón Sintasa/metabolismo , Almidón/metabolismo , Conformación de Carbohidratos , Cruzamientos Genéticos , Pleiotropía Genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Oryza/química , Oryza/genética , Fitomejoramiento , Semillas/anatomía & histología , Almidón/química , Almidón Sintasa/química , Almidón Sintasa/genéticaRESUMEN
Early flowering trait is essential for rice cultivars grown at high latitude since delayed flowering leads to seed development at low temperature, which decreases yield. However, early flowering at high temperature promotes the formation of chalky seeds with low apparent amylose content and high starch gelatinization temperature, thus affecting grain quality. Deletion of starch synthase IIa (SSIIa) shows inverse effects of high temperature, and the ss2a mutant shows higher apparent amylose content and lower gelatinization temperature. Heading date 1 (Hd1) is the major regulator of flowering time, and a nonfunctional hd1 allele is required for early flowering. To understand the relationship among heading date, starch properties, and yield, we generated and characterized near-isogenic rice lines with ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes. The ss2a Hd1 line showed the highest plant biomass; however, its grain yield varied by year. The ss2a Hd1 hd1 showed higher total grain weight than ss2a hd1. The ss2a hd1 line produced the lowest number of premature seeds and showed higher gelatinization temperature and lower apparent amylose content than ss2a Hd1. These results highlight Hd1 as the candidate gene for developing high-yielding rice cultivars with the desired starch structure.
Asunto(s)
Oryza , Amilosa , Grano Comestible/genética , Oryza/genética , Proteínas de Plantas/genética , Almidón/química , TemperaturaRESUMEN
CO2-responsive CCT protein (CRCT) is suggested to be a positive regulator of starch biosynthesis in the leaf sheaths of rice, regulating the expression levels of starch biosynthesis-related genes. In this study, the effects of CRCT expression levels on the expression of starch biosynthesis-related enzymes and the quality of starch were studied. Using native-PAGE/activity staining and immunoblotting, we found that the protein levels of starch synthase I, branching enzyme I, branching enzyme IIa, isoamylase 1 and phosphorylase 1 were largely correlated with the CRCT expression levels in the leaf sheaths of CRCT transgenic lines. In contrast, the CRCT expression levels largely did not affect the expression levels and/or activities of starch biosynthesis-related enzymes in the leaf blades and endosperm tissues. The analysis of the chain-length distribution of starch in the leaf sheaths showed that short chains with a degree of polymerization from 5 to 14 were increased in the overexpression lines but decreased in the knockdown lines. The amylose content of starch in the leaf sheath was greatly increased in the overexpression lines. In contrast, the molecular weight of the amylopectin of starch in the leaf sheath of overexpression lines did not change compared with those of the non-transgenic rice. These results suggest that CRCT can control the quality and the quantity of starch in the leaf sheath by regulating the expression of particular starch biosynthesis-related enzymes.
Asunto(s)
Dióxido de Carbono/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Almidón/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Amilosa/metabolismo , Isoamilasa/metabolismo , Almidón Sintasa/metabolismoRESUMEN
BACKGROUND: Starch is the major component of cereal grains and is composed of essentially linear amylose and highly branched amylopectin. The properties and composition of starch determine the use and value of grains and their products. Starch synthase (SS) I, SSIIa, and SSIIIa play central roles in amylopectin biosynthesis. These three SS isozymes also affect seed development, as complete loss of both SSI and SSIIIa under reduced SSIIa activity in rice lead to sterility, whereas presence of minimal SSI or SSIIIa activity is sufficient for generating fertile seeds. SSs, branching enzymes, and/or debranching enzymes form protein complexes in cereal. However, the relationship between starch properties and the formation of protein complexes remain largely unknown. To better understand this phenomenon, properties of starch and protein complex formation were analyzed using developing mutant rice seeds (ss1 L /ss2a L /ss3a) in which all three major SS activities were reduced. RESULTS: The SS activity of ss1 L /ss2a L /ss3a was 25%-30% that of the wild-type. However, the grain weight of ss1 L /ss2a L /ss3a was 89% of the wild-type, 55% of which was starch, showing considerable starch synthesis. The reduction of soluble SS activity in ss1 L /ss2a L /ss3a resulted in increased levels of ADP-glucose pyrophosphorylase and granule-bound starch synthase I, which are responsible for substrate synthesis and amylose synthesis, respectively. Together, these features led to an increase in apparent amylose content (34%) in ss1 L /ss2a L /ss3a compared with wild-type (20%). Gel filtration chromatography of the soluble proteins in ss1 L /ss2a L /ss3a showed that the majority of the starch biosynthetic enzymes maintained the similar elution patterns as wild-type, except that the amounts of high-molecular-weight SSI (> 300 kDa) were reduced and SSIIa of approximately 200-300 kDa were present instead of those > 440 kDa, which predominate in wild-type. Immuno-precipitation analyses suggested that the interaction between the starch biosynthetic enzymes maybe reduced or weaker than in wild-type. CONCLUSIONS: Although major SS isozymes were simultaneously reduced in ss1 L /ss2a L /ss3a rice, active protein complexes were formed with a slightly altered pattern, suggesting that the assembly of protein complexes may be complemented among the SS isozymes. In addition, ss1 L /ss2a L /ss3a maintained the ability to synthesize starch and accumulated less amylopectin and more amylose in starch.
Asunto(s)
Oryza/enzimología , Oryza/metabolismo , Semillas/enzimología , Semillas/metabolismo , Almidón Sintasa/metabolismo , Almidón/metabolismo , Amilopectina/metabolismo , Amilosa/metabolismoRESUMEN
The lengths of amylopectin-branched chains are precise and influence the physicochemical properties of starch, which determine starch functionality. Three major isozymes of starch synthases (SSs), SSI, SSII(a), and SSIII(a), are primarily responsible for amylopectin chain elongation in the storage tissues of plants. To date, the majority of reported rice mutants were generated using japonica cultivars, which have almost inactive SSIIa. Although three SSs share some overlapping chain length preferences, whether they complement each other remains unknown due to the absence of suitable genetic combinations of materials. In this study, rice ss1/SS2a/SS3a and SS1/SS2a/ss3a were newly generated, and the chain length distribution patterns of all the possible combinations of presence and absence of SSI, SSIIa, and SSIIIa activities were compared. This study demonstrated that SSIIa can complement most SSI functions that use glucan chains with DP 6-7 to generate DP 8-12 chains but cannot fully compensate for the elongation of DP 16-19 chains. This suggests that SSIIa preferentially elongates outer but not inner chains of amylopectin. In addition, the results revealed that neither SSI nor SSIIIa compensate for SSIIa. Neither SSI nor SSIIa compensate for elongation of DP >30 by SSIIIa. SSIIa could not resolve the pleiotropic increase of SSI caused by the absence of SSIIIa; instead, SSIIa further elongated those branches elongated by SSI. These results revealed compensatory differences among three major SS isozymes responsible for lengths of amylopectin branches.
Asunto(s)
Amilopectina/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Almidón Sintasa/metabolismo , Amilopectina/química , Endospermo/química , Endospermo/metabolismo , Genotipo , Estructura Molecular , Mutagénesis Insercional , Oryza/genética , Almidón/biosíntesis , Almidón Sintasa/clasificación , Almidón Sintasa/genéticaRESUMEN
Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts. This study investigated whether protein-protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200-400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs-BEs, and, among BE isozymes, BEIIa-Pho1, and pullulanase-type DBE-BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch.
Asunto(s)
Amilopectina/metabolismo , Glucanos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Dominios y Motivos de Interacción de Proteínas , Cromatografía en Gel , Endospermo/enzimología , Endospermo/genética , Inmunoprecipitación , Isoenzimas/genética , Isoenzimas/metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Mapeo de Interacción de ProteínasRESUMEN
BACKGROUND: Starch is the most important carbohydrate in plant storage tissues. Multiple isozymes in at least four enzyme classes are involved in starch biosynthesis. Some of these isozymes are thought to interact and form complexes for efficient starch biosynthesis. Of these enzyme classes, starch synthases (SSs) and branching enzymes (BEs) play particularly central roles. RESULTS: We generated double mutant lines (ss1/be1 and ss1L/be2b) between SSI (the largest component of total soluble SS activity) and BEI or BEIIb (major BEs in developing rice endosperm) to explore the relationships among these isozymes. The seed weight of ss1/be1 was comparable to that of wild type, although most ss1/be2b seeds were sterile and no double recessive plants were obtained. The seed weight of the double recessive mutant line ss1L/be2b, derived from the leaky ss1 mutant (ss1L) and be2b, was higher than that of the single be2b mutant. Analyses of the chain-length distribution of amylopectin in ss1/be1 endosperm revealed additive effects of SSI and BEI on amylopectin structure. Chain-length analysis indicated that the BEIIb deficiency significantly reduced the ratio of short chains in amylopectin of ss1L/be2b. The amylose content of endosperm starch of ss1/be1 and ss1L/be2b was almost the same as that of wild type, whereas the endosperm starch of be2b contained more amylose than did that of wild type. SSI, BEI, and BEIIb deficiency also affected the extent of binding of other isozymes to starch granules. CONCLUSIONS: Analysis of the chain-length distribution in amylopectin of the double mutant lines showed that SSI and BEI or BEIIb primarily function independently, and branching by BEIIb is followed by SSI chain elongation. The increased amylose content in be2b was because of reduced amylopectin biosynthesis; however, the lower SSI activity in this background may have enhanced amylopectin biosynthesis as a result of a correction of imbalance between the branching and elongation found in the single mutant. The fact that a deficiency of SSI, BEI, or BEIIb affected the affinity of other starch biosynthetic isozymes for the starch granule implies that there is a close interaction among SSI, BEI and BEIIb during amylopectin biosynthesis in rice endosperm.
Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Mutación/genética , Oryza/enzimología , Almidón Sintasa/metabolismo , Amilopectina/química , Amilosa/química , Amilosa/metabolismo , Biomasa , Cromatografía en Gel , Electroforesis Capilar , Endospermo/enzimología , Endospermo/metabolismo , Genes Recesivos , Pleiotropía Genética , Glucosa-1-Fosfato Adenililtransferasa , Isoenzimas/metabolismo , Peso MolecularRESUMEN
Starch synthase (SS) IIIa has the second highest activity of the total soluble SS activity in developing rice endosperm. Branching enzyme (BE) IIb is the major BE isozyme, and is strongly expressed in developing rice endosperm. A mutant (ss3a/be2b) was generated from wild-type japonica rice which lacks SSIIa activity. The seed weight of ss3a/be2b was 74-94% of that of the wild type, whereas the be2b seed weight was 59-73% of that of the wild type. There were significantly fewer amylopectin short chains [degree of polymerization (DP) ≤13] in ss3a/be2b compared with the wild type. In contrast, the amount of long chains (DP ≥25) connecting clusters of amylopectin in ss3a/be2b was higher than in the wild type and lower than in be2b. The apparent amylose content of ss3a/be2b was 45%, which was >1.5 times greater than that of either ss3a or be2b. Both SSIIIa and BEIIb deficiencies led to higher activity of ADP-glucose pyrophosphorylase (AGPase) and granule-bound starch synthase I (GBSSI), which partly explains the high amylose content in the ss3a/be2b endosperm. The percentage apparent amylose content of ss3a and ss3a/be2b at 10 days after flowering (DAF) was higher than that of the wild type and be2b. At 20 DAF, amylopectin biosynthesis in be2b and ss3a/be2b was not observed, whereas amylose biosynthesis in these lines was accelerated at 30 DAF. These data suggest that the high amylose content in the ss3a/be2b mutant results from higher amylose biosynthesis at two stages, up to 20 DAF and from 30 DAF to maturity.
Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/deficiencia , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Amilosa/metabolismo , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Almidón Sintasa/deficiencia , Almidón Sintasa/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Semillas/genética , Almidón Sintasa/genéticaRESUMEN
BACKGROUND: Resistant starch (RS) is beneficial for human health. Loss of starch branching enzyme IIb (BEIIb) increases the proportion of amylopectin long chains, which greatly elevates the RS content. Although high RS content cereals are desired, an increase in RS content is often accompanied by a decrease in seed weight. To further increase the RS content, genes encoding active-type starch synthase (SS) IIa, which elongates amylopectin branches, and high expression-type granule-bound SSI (GBSSI), which synthesizes amylose, were introduced into the be2b mutant rice. This attempt increased the RS content, but further improvement of agricultural traits was required because of a mixture of indica and japonica rice phonotype, such as different grain sizes, flowering times, and seed shattering traits. In the present study, the high RS lines were backcrossed with an elite rice cultivar, and the starch properties of the resultant high-yielding RS lines were analyzed. RESULTS: The seed weight of high RS lines was greatly improved after backcrossing, increasing up to 190% compared with the seed weight before backcrossing. Amylopectin structure, gelatinization temperature, and RS content of high RS lines showed almost no change after backcrossing. High RS lines contained longer amylopectin branch chains than the wild type, and lines with active-type SSIIa contained a higher proportion of long amylopectin chains compared with the lines with less active-SSIIa, and thus showed higher gelatinization temperature. Although the RS content of rice varied with the cooking method, those of high RS lines remained high after backcrossing. The RS contents of cooked rice of high RS lines were high (27-35%), whereas that of the elite parental rice was considerably low (< 0.7%). The RS contents of lines with active-type SSIIa and high-level GBSSI expression in be2b or be2b ss3a background were higher than those of lines with less-active SSIIa. CONCLUSIONS: The present study revealed that backcrossing high RS rice lines with elite rice cultivars could increase the seed weight, without compromising the RS content. It is likely that backcrossing introduced loci enhancing seed length and width as well as loci promoting early flowering for ensuring an optimum temperature during RS biosynthesis.
RESUMEN
Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the Waxy (Wx) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the Wx gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the Wx gene remained unknown. Here, we sequenced the Wx gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1-6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7-13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the Wx gene found in this study may provide useful information for screening specific cultivars with different ELC content.
RESUMEN
The gelatinization temperature of endosperm starch in most japonica rice cultivars is significantly lower than that in most indica rice cultivars. This is because three single nucleotide polymorphisms in the Starch synthase (SS) IIa gene in japonica rice cultivars (SSIIaJ ) significantly reduce SSIIa activity, resulting in an increase in amylopectin short chains with degree of polymerization (DP) ≤ 12 compared to indica rice cultivars (SSIIaI ). SSIIa forms a trimeric complex with SSI and starch branching enzyme (BE) IIb in maize and japonica rice, which is likely important for the biosynthesis of short and intermediate amylopectin chains (DP ≤ 24) within the amylopectin cluster. It was unknown whether the complete absence of SSIIa further increases amylopectin short chains and reduces gelatinization temperature and/or forms altered protein complexes due to the lack of a suitable mutant. Here, we identify the SSIIa-deficient mutant rice line EM204 (ss2a) from a screen of ca. 1,500 plants of the rice cultivar Kinmaze (japonica) that were subjected to N-methyl-N-nitrosourea mutagenesis. The SSIIa gene in EM204 was mutated at the boundary between intron 5 and exon 6, which generated a guanine to adenine mutation and resulted in deletion of exon 6 in the mRNA transcript. SSIIa activity and SSIIa protein in developing endosperm of EM204 were not detected by native-PAGE/SS activity staining and native-PAGE/immunoblotting, respectively. SSIIa protein was completely absent in mature seeds. Gel filtration chromatography of soluble protein extracted from developing seeds showed that the SSI elution pattern in EM204 was altered and more SSI was eluted around 300 kDa, which corresponds with the molecular weight of trimeric complexes in wild type. The apparent amylose content of EM204 rice grains was higher than that in its parent Kinmaze. EM204 also had higher content of amylopectin short chains (DP ≤ 12) than Kinmaze, which reduced the gelatinization temperature of EM204 starch by 5.6°C compared to Kinmaze. These results indicate that EM204 starch will be suitable for making foods and food additives that easily gelatinize and slowly retrograde.