Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Photosynth Res ; 160(1): 31-44, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502255

RESUMEN

Accumulation of carotenoid (Car) triplet states was investigated by singlet-triplet annihilation, measured as chlorophyll (Chl) fluorescence quenching in sunflower and lettuce leaves. The leaves were illuminated by Xe flashes of 4 µs length at half-height and 525-565 or 410-490 nm spectral band, maximum intensity 2 mol quanta m-2 s-1, flash photon dose up to 10 µmol m-2 or 4-10 PSII excitations. Superimposed upon the non-photochemically unquenched Fmd state, fluorescence was strongly quenched near the flash maximum (minimum yield Fe), but returned to the Fmd level after 30-50 µs. The fraction of PSII containing a 3Car in equilibrium with singlet excitation was calculated as Te = (Fmd-Fe)/Fmd. Light dependence of Te was a rectangular hyperbola, whose initial slope and plateau were determined by the quantum yields of triplet formation and annihilation and by the triplet lifetime. The intrinsic lifetime was 9 µs, but it was strongly shortened by the presence of O2. The triplet yield was 0.66 without nonphotochemical quenching (NPQ) but approached zero when NP-Quenched fluorescence approached 0.2 Fmd. The results show that in the Fmd state a light-adapted charge-separated PSIIL state is formed (Sipka et al., The Plant Cell 33:1286-1302, 2021) in which Pheo-P680+ radical pair formation is hindered, and excitation is terminated in the antenna by 3Car formation. The results confirm that there is no excitonic connectivity between PSII units. In the PSIIL state each PSII is individually turned into the NPQ state, where excess excitation is quenched in the antenna without 3Car formation.


Asunto(s)
Fotones , Complejo de Proteína del Fotosistema II , Carotenoides , Clorofila , Complejos de Proteína Captadores de Luz
2.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077504

RESUMEN

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Asunto(s)
Hipotermia Inducida , Hipotermia , Daño por Reperfusión , Frío , Humanos , Hipoxia
3.
Photosynth Res ; 145(3): 209-225, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32918663

RESUMEN

Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 µs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.


Asunto(s)
Lactuca/química , Nicotiana/química , Complejo de Proteína del Fotosistema II , Hojas de la Planta/química , Fluorescencia , Luz , Oxígeno , Factores de Tiempo
4.
Photosynth Res ; 143(3): 335-346, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31960223

RESUMEN

Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.


Asunto(s)
Procesos Fotoquímicos , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Transporte de Electrón , Fluorescencia , Modelos Moleculares , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo
5.
Photosynth Res ; 136(1): 63-82, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28936722

RESUMEN

The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA- to QB be slower than that from QA- to QB-. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.


Asunto(s)
Clorofila/metabolismo , Modelos Biológicos , Complejo de Proteína del Fotosistema II/metabolismo , Diurona , Transporte de Electrón/efectos de la radiación , Fluorescencia , Calor , Cinética , Oxidación-Reducción , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plastoquinona/metabolismo , Factores de Tiempo
6.
Biochim Biophys Acta ; 1857(6): 819-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27056771

RESUMEN

Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control."


Asunto(s)
Complejo de Citocromo b6f/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Plastoquinona/análogos & derivados , Algoritmos , Clorofila/metabolismo , Citocromos f/metabolismo , Transporte de Electrón , Helianthus/metabolismo , Helianthus/efectos de la radiación , Cinética , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Biológicos , Oxidación-Reducción , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/efectos de la radiación , Plastoquinona/metabolismo
7.
Biochim Biophys Acta ; 1847(6-7): 565-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25800682

RESUMEN

In sunflower leaves linear electron flow LEF=4O2 evolution rate was measured at 20 ppm O2 in N2. PSII charge separation rate CSRII=aII∙PAD∙(Fm-F)/Fm, where aII is excitation partitioning to PSII, PAD is photon absorption density, Fm and F are maximum and actual fluorescence yields. Under 630 nm LED+720 nm far-red light (FRL), LEF was equal to CSRII with aII=0.51 to 0.58. After FRL was turned off, plastoquinol (PQH2) accumulated, but LEF decreased more than accountable by F increase, indicating PQH2-oxidizing cyclic electron flow in PSII (CEFII). CEFII was faster under conditions requiring more ATP, consistent with CEFII being coupled with proton translocation. We propose that PQH2 bound to the QC site is oxidized, one e- moving to P680+, the other e- to Cyt b559. From Cyt b559 the e- reduces QB- at the QB site, forming PQH2. About 10-15% electrons may cycle, causing misses in the period-4 flash O2 evolution and lower quantum yield of photosynthesis under stress. We also measured concentration dependence of PQH2 oxidation by dioxygen, as indicated by post-illumination decrease of Chl fluorescence yield. After light was turned off, F rapidly decreased from Fm to 0.2 Fv, but further decrease to F0 was slow and O2 concentration dependent. The rate constant of PQH2 oxidation, determined from this slow phase, was 0.054 s(-1) at 270 µM (21%) O2, decreasing with Km(O2) of 60 µM (4.6%) O2. This eliminates the interference of O2 in the measurements of CEFII.


Asunto(s)
Helianthus/metabolismo , Luz , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Plastoquinona/análogos & derivados , Adenosina Trifosfato/metabolismo , Clorofila/química , Clorofila/metabolismo , Transporte de Electrón , Electrones , Fluorescencia , Oxidación-Reducción , Fotones , Fotosíntesis/fisiología , Plastoquinona/química , Plastoquinona/metabolismo
8.
Biochim Biophys Acta ; 1837(2): 315-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24333386

RESUMEN

The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.


Asunto(s)
Helianthus/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Teoría Cuántica , Transporte de Electrón , Electrones , Rayos Infrarrojos , Oxígeno/metabolismo , Fotones , Análisis Espectral , Factores de Tiempo
9.
Photosynth Res ; 122(1): 41-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24817180

RESUMEN

This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.


Asunto(s)
Helianthus/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Zea mays/fisiología , Clorofila/metabolismo , Transporte de Electrón , Fluorescencia , Helianthus/efectos de la radiación , Luz , Malato Deshidrogenasa/metabolismo , Células del Mesófilo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/efectos de la radiación , Espectrometría de Fluorescencia , Zea mays/efectos de la radiación
10.
Photosynth Res ; 117(1-3): 431-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24005848

RESUMEN

Chl fluorescence induction (FI) was recorded in sunflower leaves pre-adapted to darkness or low preferentially PSI light, or inhibited by DCMU. For analysis the FI curves were plotted against the cumulative number of excitations quenched by PSII, n q, calculated as the cumulative complementary area above the FI curve. In the +DCMU leaves n q was <1 per PSII, suggesting pre-reduction of Q A during the dark pre-exposure. A strongly sigmoidal FI curve was constructed by complementing (shifting) the recorded FI curves to n q = 1 excitation per PSII. The full FI curve in +DCMU leaves was well fitted by a model assuming PSII antennae are excitonically connected in domains of four PSII. This result, obtained by gradually reducing Q A in PSII with pre-blocked Q B (by DCMU or PQH2), differs from that obtained by gradually blocking the Q B site (by increasing DCMU or PQH2 level) in leaves during (quasi)steady-state e(-) transport (Oja and Laisk, Photosynth Res 114, 15-28, 2012). Explanations are discussed. Donor side quenching was characterized by comparison of the total n q in one and the same dark-adapted leaf, which apparently increased with increasing PFD during FI. An explanation for the donor side quenching is proposed, based on electron transfer from excited P680* to oxidized tyrosine Z (TyrZ(ox)). At high PFDs the donor side quenching at the J inflection of FI is due mainly to photochemical quenching by TyrZ(ox). This quenching remains active for subsequent photons while TyrZ remains oxidized, following charge transfer to Q A. During further induction this quenching disappears as soon as PQ and Q A become reduced, charge separation becomes impossible and TyrZ is reduced by the water oxidizing complex.


Asunto(s)
Electrones , Helianthus/metabolismo , Temperatura , Adaptación Fisiológica/efectos de los fármacos , Oscuridad , Diurona/farmacología , Transporte de Electrón/efectos de los fármacos , Fluorescencia , Helianthus/efectos de los fármacos , Fotones , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
11.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506952

RESUMEN

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Glutamina/metabolismo , Regulación hacia Arriba
12.
Photosynth Res ; 114(1): 15-28, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22890327

RESUMEN

Oxygen evolution was measured in sunflower leaves in steady-state and during multiple-turnover pulses (MTP) of different light (630 nm LED plus far-red light) intensity and duration. In parallel, Chl fluorescence yields F(0) (minimum), F(s) (steady-state), and F(m) (pulse-saturated), as well as fluorescence induction during MTPs were recorded. Extra O(2) evolution was measured in response to a saturating single-turnover Xe flash (STF) applied immediately subsequently to the actinic light in the steady-state and to each MTP. Under the used anaerobic conditions and randomized S-states electron transport per STF was calculated as 4O(2) evolution. The STF-induced electron transport (=the number of open PSII) was maximal at the low background light, but decreased with progressing light saturation in steady-state and with the increasing duration of MTP. The quantum yield (effective antenna size) of open PSII centers remained constant when adjacent centers became closed. The photochemical quenching of fluorescence q(P) = (F(m) - F(s))/(F(m) - F(0)) was proportional with the portion of open PSII centers in the steady-state (variable non-photochemical quenching, NPQ) and with increasing MTP duration (NPQ absent). Comparison of experimental responses to a model based on PSII dimers with well-connected antennae showed no energetic connectivity between PSII antennae in intact leaves, suggesting that in vivo PSII exist as monomers, or dimers with energetically disconnected antennae.


Asunto(s)
Clorofila/metabolismo , Helianthus/efectos de la radiación , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Evolución Biológica , Transporte de Electrón , Fluorescencia , Helianthus/metabolismo , Luz , Oxidación-Reducción , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/metabolismo , Circonio/química
13.
Photosynth Res ; 113(1-3): 145-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22644479

RESUMEN

Oxygen evolution and Chl fluorescence induction were measured during multiple turnover light pulses (MTP) of 630-nm wavelength, intensities from 250 to 8,000 µmol quanta m(-2) s(-1) and duration from 0.3 to 200 ms in sunflower leaves at 22 °C. The ambient O(2) concentration was 10-30 ppm and MTP were applied after pre-illumination under far-red light (FRL), which oxidized plastoquinone (PQ) and randomized S-states because of the partial excitation of PSII. Electron (e ( - )) flow was calculated as 4·O(2) evolution. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated against pulse length to find the time course of O(2) evolution rate with sub-millisecond resolution. Comparison of the quantum yields, Y (IIO) = e ( - )/hν from O(2) evolution and Y (IIF) = (F (m) - F)/F (m) from Chl fluorescence, detected significant losses not accompanied by fluorescence emission. These quantum losses are discussed to be caused by charge recombination between Q (A) (-) and oxidized TyrZ at a rate of about 1,000 s(-1), either directly or via the donor side equilibrium complex Q(A) â†’ P (D1) (+)  â†” TyrZ(ox), or because of cycling facilitated by Cyt b (559). Predicted from the suggested mechanism, charge recombination is enhanced by damage to the water-oxidizing complex and by restricted PSII acceptor side oxidation. The rate of PSII charge recombination/cycling is fast enough for being important in photoprotection.


Asunto(s)
Clorofila/metabolismo , Fluorescencia , Helianthus/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Absorción/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Cinética , Hojas de la Planta/efectos de la radiación , Teoría Cuántica , Factores de Tiempo
14.
Photosynth Res ; 110(2): 99-109, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22038184

RESUMEN

Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 µmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f.


Asunto(s)
Helianthus/efectos de la radiación , Luz , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación , Sitios de Unión , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón , Helianthus/metabolismo , Cinética , Oxidación-Reducción , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Factores de Tiempo
15.
Photosynth Res ; 110(2): 73-88, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22002818

RESUMEN

This report describes a new method to measure the chloroplastic lumenal proton pool in leaves (tobacco and sunflower). The method is based on measurement of CO(2) outbursts from leaves caused by the shift in the CO(2) + H(2)O ↔ HCO(3)(-) + H(+) equilibrium in the chloroplast stroma as protons return from the lumen after darkening. Protons did not accumulate in the lumen to a significant extent when photosynthesis was light-limited, but a large pool of >100 µmol H(+) m(-2) accumulated in the lumen as photosynthesis became light-saturated. During thylakoid energization in the light, large amounts of protons are moved from binding sites in the stroma to binding sites in the lumen. The transthylakoidal difference in the chemical potential of free protons (ΔpH) is largely based on the difference in the chemical potential of bound protons in the lumenal and stromal compartments (pK). Over the course of the dark-light induction of photosynthesis protons accumulate in the lumen during reduction of 3-phosphoglycerate. The accumulation of electrons in reduced compounds of the stroma and cytosol is the natural cause for accumulation of a stoichiometric pool of lumenal protons during this transient event.


Asunto(s)
Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Protones , Resinas Acrílicas , Adenosina Trifosfato/metabolismo , Sitios de Unión , Transporte Biológico , Dióxido de Carbono/metabolismo , Oscuridad , Ácidos Glicéricos/metabolismo , Helianthus/metabolismo , Luz , Potenciales de la Membrana , Procesos Fotoquímicos , Ribulosafosfatos/metabolismo , Análisis Espectral/métodos , Coloración y Etiquetado , Nicotiana/metabolismo
16.
Photosynth Res ; 103(2): 79-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20039131

RESUMEN

Fast cyclic electron transport (CET) around photosystem I (PS I) was observed in sunflower (Helianthus annuus L.) leaves under intense far-red light (FRL) of up to 200 mumol quanta m(-2) s(-1). The electron transport rate (ETR) through PS I was found from the FRL-dark transmittance change at 810 and 950 nm, which was deconvoluted into redox states and pool sizes of P700, plastocyanin (PC) and cytochrome f (Cyt f). PC and P700 were in redox equilibrium with K(e) = 35 (ΔE(m) = 90 mV). PS II ETR was based on O(2) evolution. CET [(PS I ETR) - (PS II ETR)] increased to 50-70 mumol e(-) m(-2) s(-1) when linear electron transport (LET) under FRL was limited to 5 mumol e(-) m(-2) s(-1) in a gas phase containing 20-40 mumol CO(2) mol(-1) and 20 mumol O(2) mol(-1). Under these conditions, pulse-saturated fluorescence yield F(m) was non-photochemically quenched; however, F(m) was similarly quenched when LET was driven by low green or white light, which energetically precluded the possibility for active CET. We suggest that under FRL, CET is rather not coupled to transmembrane proton translocation than the CET-coupled protons are short-circuited via proton channels regulated to open at high ΔpH. A kinetic analysis of CET electron donors and acceptors suggests the CET pathway is that of the reversed Q-cycle: Fd -> (FNR) -> Cyt c(n) -> Cyt b(h) -> Cyt b(l) -> Rieske FeS -> Cyt f -> PC -> P700 ->-> Fd. CET is activated when PQH(2) oxidation is opposed by high ΔpH, and ferredoxin (Fd) is reduced due to low availability of e(-) acceptors. The physiological significance of CET may be photoprotective, as CET may be regarded as a mechanism of energy dissipation under stress conditions.


Asunto(s)
Luz , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Protones , Absorción/efectos de los fármacos , Absorción/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Dióxido de Carbono/farmacología , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Electrones , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Helianthus/efectos de la radiación , Cinética , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Teoría Cuántica , Espectrometría de Fluorescencia
17.
Photosynth Res ; 103(3): 153-66, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20130995

RESUMEN

Oxidation of photosystem I (PSI) donors under far-red light (FRL), slow re-reduction by stromal reductants and fast re-reduction in the dark subsequent to illumination by white light (WL) were recorded in leaves of several C(3) plants at 810 and 950 nm. During the re-reduction from stromal reductants the mutual interdependence of the two signals followed the theoretical relationship calculated assuming redox equilibrium between plastocyanin (PC) and P700, with the equilibrium constant of 40 +/- 10 (Delta E (m) = 86-99 mV) in most of the measured 24 leaves of nine plant species. The presence of non-oxidizable PC of up to 13% of the whole pool, indicating partial control of electron transport by PC diffusion, was transiently detected during a saturation pulse of white light superimposed on FRL or on low WL. Nevertheless, non-oxidizable PC was absent in the steady state during fast light-saturated photosynthesis. It is concluded that in leaves during steady state photosynthesis the electron transport rate is not critically limited by PC diffusion, but the high-potential electron carriers PC and P700 remain close to the redox equilibrium.


Asunto(s)
Electrones , Helianthus/fisiología , Helianthus/efectos de la radiación , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Electrón/efectos de la radiación , Ferredoxinas/metabolismo , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plastocianina/metabolismo , Análisis Espectral
18.
Physiol Plant ; 131(1): 1-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18251919

RESUMEN

We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O(2) concentrations in N(2) (9-1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O(2) concentration and the increase in CO(2) concentration as result of leaf respiration were measured by a zirconium cell O(2) analyser and infrared-absorption CO(2) analyser, respectively. The low O(2) concentrations little influenced the rate of CO(2) evolution during the 60-s exposure. The initial slope of the O(2) uptake curve on the dissolved O(2) concentration basis was relatively constant in leaves of a single species, 1.5 mm s(-1) in sunflower and 1.8 mm s(-1) in aspen. The apparent K(0.5)(O(2)) values ranged from 0.33 to 0.67 microM in sunflower and from 0.33 to 1.1 microM in aspen, mainly because of the variation of the maximum rate, V(max) (leaf temperature 22 degrees C). The initial slope of the O(2) response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.


Asunto(s)
Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Respiración de la Célula/fisiología , Transporte de Electrón , Cinética , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Populus/enzimología , Populus/metabolismo , Populus/fisiología
19.
Biochim Biophys Acta ; 1708(1): 79-90, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15949986

RESUMEN

The light-dependent control of photosynthetic electron transport from plastoquinol (PQH(2)) through the cytochrome b(6)f complex (Cyt b(6)f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700(+) and PC(+) was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC(+) and P700(+) components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b(6)f to the PSI donors. A significant down-regulation of Cyt b(6)f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b(6)f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e(-) transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.


Asunto(s)
Complejo de Citocromo b6f/metabolismo , Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Betula , Clorofila/metabolismo , Fluorometría , Helianthus , Luz , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Solidago , Tilia , Nicotiana
20.
Biochim Biophys Acta ; 1708(3): 311-21, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15950173

RESUMEN

We have found that long-wavelength quanta up to 780 nm support oxygen evolution from the leaves of sunflower and bean. The far-red light excitations are supporting the photochemical activity of photosystem II, as is indicated by the increased chlorophyll fluorescence in response to the reduction of the photosystem II primary electron acceptor, Q(A). The results also demonstrate that the far-red photosystem II excitations are susceptible to non-photochemical quenching, although less than the red excitations. Uphill activation energies of 9.8+/-0.5 kJ mol(-1) and 12.5+/-0.7 kJ mol(-1) have been revealed in sunflower leaves for the 716 and 740 nm illumination, respectively, from the temperature dependencies of quantum yields, comparable to the corresponding energy gaps of 8.8 and 14.3 kJ mol(-1) between the 716 and 680 nm, and the 740 and 680 nm light quanta. Similarly, the non-photochemical quenching of far-red excitations is facilitated by temperature confirming thermal activation of the far-red quanta to the photosystem II core. The observations are discussed in terms of as yet undisclosed far-red forms of chlorophyll in the photosystem II antenna, reversed (uphill) spill-over of excitation from photosystem I antenna to the photosystem II antenna, as well as absorption from thermally populated vibrational sub-levels of photosystem II chlorophylls in the ground electronic state. From these three interpretations, our analysis favours the first one, i.e., the presence in intact plant leaves of a small number of far-red chlorophylls of photosystem II. Based on analogy with the well-known far-red spectral forms in photosystem I, it is likely that some kind of strongly coupled chlorophyll dimers/aggregates are involved. The similarity of the result for sunflower and bean proves that both the extreme long-wavelength oxygen evolution and the local quantum yield maximum are general properties of the plants.


Asunto(s)
Helianthus/metabolismo , Phaseolus/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Transporte de Electrón , Luz , Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA