Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139352

RESUMEN

The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/genética , Transducción de Señal/genética , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica
2.
Lasers Med Sci ; 35(6): 1431-1437, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31900690

RESUMEN

Since time immemorial, tuberculosis (TB) has intimidated the human race owing to its severity. Its socio-economic burden has led to it being a major cause of concern. It is one of the world's major causes of death from a single agent. Since most of the middle- and low-income countries are burdened with TB, sputum smear examination using conventional light microscopy is often the only resort for diagnosing TB. However, fluorescence microscopy is used as standard in most high-income countries, owing to its increased sensitivity. Light-emitting diodes (LEDs), being inexpensive, are increasingly gaining popularity as an alternative light source for fluorescence microscopy. It has been found to be highly efficient and has a lot of advantages over the conventional Ziehl-Neelsen-based bright field microscopy. In this review, we discuss about the usefulness of LED-based fluorescence microscopy in diagnosing TB and how it is superior to the other sources of light used.


Asunto(s)
Microscopía Fluorescente , Óptica y Fotónica , Tuberculosis Pulmonar/diagnóstico , Citoesqueleto de Actina/metabolismo , Colorantes , Humanos , Tuberculosis Pulmonar/microbiología
3.
Mol Ther Oncol ; 32(1): 200769, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596306

RESUMEN

Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.

4.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645827

RESUMEN

Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary: Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA