Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breed Sci ; 67(2): 165-171, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28588394

RESUMEN

Lipoxygenase-1 (LOX-1) null 'New Sachiho Golden' is a two-row malting barley (Hordeum vulgare L.) cultivar released in 2015 that was developed at the Tochigi Prefectural Agricultural Experimental Station by backcross breeding using the high-yield leading cultivar 'Sachiho Golden' as a recurrent parent and the LOX-1 null mutant 'Daikei LM1' as a non-recurrent parent. To develop 'New Sachiho Golden' we used a simple LOX activity assay and marker-assisted selection. This is the first LOX-1 null malting barley cultivar in Japan that is resistant to barley yellow mosaic virus (types I-III). Agronomic characteristics and malting qualities of 'New Sachiho Golden' were similar to those of 'Sachiho Golden', except that 'New Sachiho Golden' had no LOX activity in ungerminated grains and had clearly lower LOX activity during malting than 'Sachiho Golden'. The concentrations of a trans-2-nonenal (T2N) precursor in wort and beer made from 'New Sachiho Golden' were significantly lower than in those made from 'Sachiho Golden', both before and after storage.

2.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927633

RESUMEN

In early spring 2018, significant mosaic disease symptoms were observed for the first time on barley leaves (Hordeum vulgare L., cv. New Sachiho Golden) in Takanezawa, Tochigi Prefecture, Japan. This cultivar carries the resistance gene rym3 (rym; resistance to yellow mosaic). Through RNA-seq analysis, Barley yellow mosaic virus (BaYMV-Takanezawa) was identified in the roots of all five plants (T01-T05) in the field. Phylogenetic analysis of RNA1, encompassing known BaYMV pathotypes I through V, revealed that it shares the same origin as isolate pathotype IV (BaYMV-Ohtawara pathotype). However, RNA2 analysis of isolates revealed the simultaneous presence of two distinct BaYMV isolates, BaYMV-Takanezawa-T01 (DRR552862, closely related to pathotype IV) and BaYMV-Takanezawa-T02 (DRR552863, closely related to pathotype III). The amino acid sequences of the BaYMV-Takanezawa isolates displayed variations, particularly in the VPg and N-terminal region of CP, containing mutations not found in other domains of the virus genome. Changes in the CI (RNA1 amino acid residue 459) and CP (RNA1 amino acid residue 2138) proteins correlated with pathogenicity. These findings underscore the importance of monitoring and understanding the genetic diversity of BaYMV for effective disease management strategies in crop breeding.


Asunto(s)
Resistencia a la Enfermedad , Hordeum , Filogenia , Enfermedades de las Plantas , Hordeum/virología , Enfermedades de las Plantas/virología , Japón , Resistencia a la Enfermedad/genética , ARN Viral/genética , Potyviridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA