Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 25(1): 37, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024946

RESUMEN

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Ratones , Animales , Femenino , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transducción de Señal , Macrófagos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
2.
Cancer ; 128(14): 2728-2735, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35578919

RESUMEN

BACKGROUND: Black race is associated with worse outcome in patients with breast cancer. The distant relapse-free survival (DRFS) between Black and White women with localized breast cancer who participated in National Cancer Institute-sponsored clinical trial was evaluated. METHODS: Pooled data were analyzed from 8 National Surgical Adjuvant Breast and Bowel Project (NSABP) trials including 9702 women with localized breast cancer treated with adjuvant chemotherapy (AC, n = 7485) or neoadjuvant chemotherapy (NAC, n = 2217), who self-reported as Black (n = 1070) or White (n = 8632) race. The association between race and DRFS was analyzed using log-rank tests and multivariate Cox regression. RESULTS: After adjustment for covariates including age, tumor size, nodal status, body mass index and taxane use, and treatment (AC vs NAC), Black race was associated with an inferior DRFS in estrogen receptor-positive (ER+; hazard ratio [HR], 1.24; 95% CI, 1.05-1.46; P = .01), but not in ER- disease (HR, 0.97; 95% CI, 0.83-1.14; P = .73), and significant interaction between race and ER status was observed (P = .03). There was no racial disparity in DRFS among patients with pathologic complete response (pCR) (log-rank P = .8). For patients without pCR, Black race was associated with worse DRFS in ER+ (HR, 1.67; 95% CI, 1.14-2.45; P = .01), but not in ER- disease (HR, 0.91; 95% CI, 0.65-1.28; P = .59). CONCLUSIONS: Black race was associated with significantly inferior DRFS in ER+ localized breast cancer treated with AC or NAC, but not in ER- disease. In the NAC group, racial disparity was also observed in patients with residual ER+ breast cancer at surgery, but not in those who had pCR. LAY SUMMARY: Black women with breast cancer have worse outcomes compared with White women. We investigated if this held true in the context of clinical trials that provide controlled treatment setting. Black women with cancer expressing estrogen receptors (ERs) had worse outcome than White women. If breast cancers did not express ERs, there was no racial disparity in outcome. We also observed racial disparity in women who received chemotherapy before their cancer was removed, but only if they had cancer expressing ERs and residual disease on completion of treatment. If the cancer disappeared with presurgical chemotherapy, there was no racial disparity.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/cirugía , Quimioterapia Adyuvante , Femenino , Humanos , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/tratamiento farmacológico , Receptores de Estrógenos/análisis
3.
Cytometry A ; 97(5): 448-457, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31889408

RESUMEN

Intravital imaging, the direct visualization of cells and tissues within a living animal, is a technique that has been employed for the better part of a century. The advent of confocal and multiphoton microscopy has dramatically improved the power of intravital imaging, making it possible to obtain optical sections of tissues non-destructively. This review discusses the various techniques used for intravital imaging, describes how intravital imaging provides information about cellular and tissue dynamics not possible to be garnered by other techniques, and details several ways in which intravital imaging is making a direct impact on the clinical care of patients. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Microscopía Intravital , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Humanos
4.
Breast Cancer Res ; 20(1): 131, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367629

RESUMEN

BACKGROUND: Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. METHODS: We crossed AREG-null (AREG-/-) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG-/- PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. RESULTS: Intriguingly, PyMT-induced lesions progress more rapidly in AREG-/- mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG-/- mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG-/- PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. CONCLUSIONS: Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.


Asunto(s)
Anfirregulina/metabolismo , Células Epiteliales/patología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Anfirregulina/genética , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/virología , Femenino , Humanos , Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/virología , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Invasividad Neoplásica/patología , Poliomavirus/genética , Poliomavirus/inmunología
5.
J Cell Sci ; 129(9): 1751-8, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084578

RESUMEN

Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Movimiento Celular/genética , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Pronóstico , Factores de Riesgo
6.
Methods ; 128: 65-77, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911733

RESUMEN

Pathologists rely on microscopy to diagnose disease states in tissues and organs. They utilize both high-resolution, high-magnification images to interpret the staining and morphology of individual cells, as well as low-magnification overviews to give context and location to these cells. Intravital imaging is a powerful technique for studying cells and tissues in their native, live environment and can yield sub-cellular resolution images similar to those used by pathologists. However, technical limitations prevent the straightforward acquisition of low-magnification images during intravital imaging, and they are hence not typically captured. The serial acquisition, mosaicking, and stitching together of many high-resolution, high-magnification fields of view is a technique that overcomes these limitations in fixed and ex vivo tissues. The technique however, has not to date been widely applied to intravital imaging as movements caused by the living animal induce image distortions that are difficult to compensate for computationally. To address this, we have developed techniques for the stabilization of numerous tissues, including extremely compliant tissues, that have traditionally been extremely difficult to image. We present a novel combination of these stabilization techniques with mosaicked and stitched intravital imaging, resulting in a process we call Large-Volume High-Resolution Intravital Imaging (LVHR-IVI). The techniques we present are validated and make large volume intravital imaging accessible to any lab with a multiphoton microscope.


Asunto(s)
Colorantes Fluorescentes , Microscopía Intravital/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Movimiento Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Ventana Pericárdica
7.
Biol Chem ; 395(2): 157-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24127542

RESUMEN

Septins are a large family of GTP-binding proteins abnormally expressed in many solid tumors. Septin 9 (SEPT9) in particular has been found overexpressed in diverse human tumors including breast, head and neck, ovarian, endometrial, kidney, and pancreatic cancer. Although we previously reported SEPT9 amplification in breast cancer, we now show specifically that high-grade breast carcinomas, the subtype with worst clinical outcome, exhibit a significant increase in SEPT9 copy number when compared with other tumor grades. We also present, for the first time, a sensitive and quantitative measure of seven (SEPT9_v1 through SEPT9_v7) isoform variant mRNA levels in mammary epithelial cells. SEPT9_v1, SEPT9_v3, SEPT9_v6, and SEPT9_v7 isoforms were expressed at the highest levels followed by SEPT9_v2 and SEPT9_v5, whereas SEPT9_v4 was almost undetectable. Although most of the isoforms were upregulated in primary tumor tissues relative to the patient-matched peritumoral tissues, SEPT9_v4 remained the lowest expressing isoform. This comprehensive analysis of SEPT9 provides substantial evidence for increased SEPT9 expression as a consequence of genomic amplification and is the first study to profile SEPT9_v1 through SEPT9_v7 isoform-specific mRNA expression in tumor and nontumor tissues from patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mama/metabolismo , Septinas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Mama/patología , Neoplasias de la Mama/patología , Células Epiteliales/metabolismo , Femenino , Amplificación de Genes , Dosificación de Gen , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Septinas/genética
8.
PLoS Genet ; 7(8): e1002218, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21876675

RESUMEN

Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
9.
Mol Cancer Ther ; 23(2): 223-234, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871911

RESUMEN

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38260319

RESUMEN

Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.

11.
bioRxiv ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39464015

RESUMEN

Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.

12.
Nat Rev Cancer ; 23(1): 25-42, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385560

RESUMEN

Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.


Asunto(s)
Neoplasias , Animales , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Microscopía Intravital/métodos , Microambiente Tumoral , Mamíferos
13.
J Vis Exp ; (200)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870314

RESUMEN

The physiology and pathophysiology of the pancreas are complex. Diseases of the pancreas, such as pancreatitis and pancreatic adenocarcinoma (PDAC) have high morbidity and mortality. Intravital imaging (IVI) is a powerful technique enabling the high-resolution imaging of tissues in both healthy and diseased states, allowing for real-time observation of cell dynamics. IVI of the murine pancreas presents significant challenges due to the deep visceral and compliant nature of the organ, which make it highly prone to damage and motion artifacts. Described here is the process of implantation of the Stabilized Window for Intravital imaging of the murine Pancreas (SWIP). The SWIP allows IVI of the murine pancreas in normal healthy states, during the transformation from the healthy pancreas to acute pancreatitis induced by cerulein, and in malignant states such as pancreatic tumors. In conjunction with genetically labeled cells or the administration of fluorescent dyes, the SWIP enables the measurement of single-cell and subcellular dynamics (including single-cell and collective migration) as well as serial imaging of the same region of interest over multiple days. The ability to capture tumor cell migration is of particular importance as the primary cause of cancer-related mortality in PDAC is the overwhelming metastatic burden. Understanding the physiological dynamics of metastasis in PDAC is a critical unmet need and crucial for improving patient prognosis. Overall, the SWIP provides improved imaging stability and expands the application of IVI in the healthy pancreas and malignant pancreas diseases.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Humanos , Animales , Ratones , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Adenocarcinoma/patología , Enfermedad Aguda , Páncreas/diagnóstico por imagen , Páncreas/patología , Microscopía Intravital/métodos , Carcinoma Ductal Pancreático/patología
14.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711751

RESUMEN

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.

15.
J Vis Exp ; (197)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486129

RESUMEN

Metastasis - the systemic spread of cancer - is the leading cause of cancer-related deaths. Although metastasis is commonly thought of as a unidirectional process wherein cells from the primary tumor disseminate and seed metastases, tumor cells in existing metastases can also redisseminate and give rise to new lesions in tertiary sites in a process known as "metastasis-from-metastases" or "metastasis-to-metastasis seeding." Metastasis-to-metastasis seeding may increase the metastatic burden and decrease the patient's quality of life and survival. Therefore, understanding the processes behind this phenomenon is crucial to refining treatment strategies for patients with metastatic cancer. Little is known about metastasis-to-metastasis seeding, due in part to logistical and technological limitations. Studies on metastasis-to-metastasis seeding rely primarily on sequencing methods, which may not be practical for researchers studying the exact timing of metastasis-to-metastasis seeding events or what promotes or prevents them. This highlights the lack of methodologies that facilitate the study of metastasis-to-metastasis seeding. To address this, we have developed - and describe herein - a murine surgical protocol for the selective photoconversion of lung metastases, allowing specific marking and fate tracking of tumor cells redisseminating from the lung to tertiary sites. To our knowledge, this is the only method for studying tumor cell redissemination and metastasis-to-metastasis seeding from the lungs that does not require genomic analysis.


Asunto(s)
Neoplasias Pulmonares , Calidad de Vida , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia
16.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961438

RESUMEN

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate in vivo tumor cell invasiveness and consequent metastatic dissemination are mostly unknown. Using a PYK2 and FAK knockdown xenograft model we show here, for the first time, that ablation of either PYK2 or FAK decreases primary tumor size and significantly reduces Tumor MicroEnvironment of Metastasis (TMEM) doorway activation, leading to decreased intravasation and reduced spontaneous lung metastasis. Intravital imaging analysis further demonstrates that PYK2, but not FAK, regulates a motility phenotype switch between focal adhesion-mediated fast motility and invadopodia-dependent, ECM-degradation associated slow motility within the primary tumor. Furthermore, we validate our in vivo and intravital imaging results with integrated transcriptomic and proteomic data analysis from xenograft knockdown tumors and reveal new and distinct pathways by which these two homologous kinases regulate breast tumor cell invasiveness and consequent metastatic dissemination. Our findings identify PYK2 and FAK as novel mediators of mammary tumor progression and metastasis and as candidate therapeutic targets for breast cancer metastasis.

17.
Dev Cell ; 58(23): 2700-2717.e12, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37963469

RESUMEN

How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos , Terapia de Inmunosupresión , Factor de Transcripción SOX9 , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo
18.
NPJ Breast Cancer ; 9(1): 52, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311792

RESUMEN

Black, compared to white, women with residual estrogen receptor-positive (ER+) breast cancer after neoadjuvant chemotherapy (NAC) have worse distant recurrence-free survival (DRFS). Such racial disparity may be due to difference in density of portals for systemic cancer cell dissemination, called TMEM doorways, and pro-metastatic tumor microenvironment (TME). Here, we evaluate residual cancer specimens after NAC from 96 Black and 87 white women. TMEM doorways are visualized by triple immunohistochemistry, and cancer stem cells by immunofluorescence for SOX9. The correlation between TMEM doorway score and pro-metastatic TME parameters with DRFS is examined using log-rank and multivariate Cox regression. Black, compared to white, patients are more likely to develop distant recurrence (49% vs 34.5%, p = 0.07), receive mastectomy (69.8% vs 54%, p = 0.04), and have higher grade tumors (p = 0.002). Tumors from Black patients have higher TMEM doorway and macrophages density overall (p = 0.002; p = 0.002, respectively) and in the ER+/HER2- (p = 0.02; p = 0.02, respectively), but not in the triple negative disease. Furthermore, high TMEM doorway score is associated with worse DRFS. TMEM doorway score is an independent prognostic factor in the entire study population (HR, 2.02; 95%CI, 1.18-3.46; p = 0.01), with a strong trend in ER+/HER2- disease (HR, 2.38; 95%CI, 0.96-5.95; p = 0.06). SOX9 expression is not associated with racial disparity in TME or outcome. In conclusion, higher TMEM doorway density in residual breast cancer after NAC is associated with higher distant recurrence risk, and Black patients are associated with higher TMEM doorway density, suggesting that TMEM doorway density may contribute to racial disparities in breast cancer.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37621948

RESUMEN

Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.

20.
Open Biol ; 12(6): 210273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35702996

RESUMEN

Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Enfermedad Aguda , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Microscopía Intravital , Ratones , Páncreas/diagnóstico por imagen , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/diagnóstico por imagen , Pancreatitis/patología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA