Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 350: 122784, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848939

RESUMEN

Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.


Asunto(s)
COVID-19 , Calcio , Probióticos , SARS-CoV-2 , Probióticos/uso terapéutico , Probióticos/farmacología , Humanos , COVID-19/metabolismo , COVID-19/virología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
2.
Biochem Pharmacol ; 226: 116363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871336

RESUMEN

Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.


Asunto(s)
Países en Desarrollo , Microbioma Gastrointestinal , Helmintiasis , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Helmintiasis/inmunología , Helmintiasis/prevención & control , Humanos , Animales , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos
3.
Mar Environ Res ; 194: 106303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150785

RESUMEN

The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.


Asunto(s)
Urocordados , Animales , Filogenia , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Bacterias/genética
4.
Braz J Microbiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134912

RESUMEN

The phosphate (P)-solubilizing potential of rhizobia isolated from active root nodules of Brazilian native Mimosa and Desmodium was assessed. Out of the 15 strains selected, five Paraburkholderia isolated from Mimosa spp. grown in rocky outcrops stood out. The Ca3(PO4)2-solubilizing efficiency of these strains ranged from 110.67 to 356.3 mgL-1, with less expressive results for FePO4 and Al(H2PO4)3, that might be attributed to the low solubility of these two P compounds. Paraburkholderia strains CNPSo 3281 and CNPSo 3076 were the most efficient siderophore producers (44.17 and 41.87 µMol EDTA) and two of the top FePO4 solubilizers. Acidification of the culture media was observed for all the strains and P sources. Regarding Ca3(PO4)2 solubilization, the main organic acids detected were glucuronic (an important component of rhizobia exopolysaccharides) and gluconic acids. Genomic analysis of P. nodosa CNPSo 3281 and CNPSo 3076 along with other phosphate-solubilizing Paraburkholderia species of the genus pointed out a conserved gene organization of phoUBR, pstSCAB, ppk and ppx. Greenhouse experiment revealed that P. nodosa CNPSo 3281 and CNPSo 3076 promoted maize growth under low P. Our results indicate the relevance of native rhizobia as multifunctional plant-associated bacteria and the rocky outcrops ecosystems as hotspots for bioprospection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA