Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 466(3): 511-24, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25564224

RESUMEN

Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interferon-stimulated gene factor 3 (ISGF3). In STAT1-defeicient U3C cells stably overexpressing human STAT2 (hST2-U3C) and STAT1-deficient murine embryonic fibroblast cells stably overexpressing mouse STAT2 (mST2-MS1KO) we observed that the IFNα-induced expression of 2'-5'-oligoadenylate synthase 2 (OAS2) and interferon-induced protein with tetratricopeptide repeats 1 (Ifit1) correlated with the kinetics of STAT2 phosphorylation, and the presence of a STAT2/IRF9 complex requiring STAT2 phosphorylation and the STAT2 transactivation domain. Subsequent microarray analysis of IFNα-treated wild-type (WT) and STAT1 KO cells overexpressing STAT2 extended our observations and identified ∼120 known antiviral ISRE-containing interferon-stimulated genes (ISGs) commonly up-regulated by STAT2/IRF9 and ISGF3. The STAT2/IRF9-directed expression profile of these IFN-stimulated genes (ISGs) was prolonged as compared with the early and transient response mediated by ISGF3. In addition, we identified a group of 'STAT2/IRF9-specific' ISGs, whose response to IFNα was ISGF3-independent. Finally, STAT2/IRF9 was able to trigger an antiviral response upon encephalomyocarditis virus (EMCV) and vesicular stomatitis Indiana virus (VSV). Our results further prove that IFNα-activated STAT2/IRF9 induces a prolonged ISGF3-like transcriptome and generates an antiviral response in the absence of STAT1. Moreover, the existence of 'STAT2/IRF9-specific' target genes predicts a novel role of STAT2 in IFNα signalling.


Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT2/metabolismo , Activación Transcripcional/fisiología , Animales , Antivirales/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Ratones , Ratones Noqueados , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética
2.
Sci Rep ; 13(1): 19923, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964081

RESUMEN

Armed conflicts have, in addition to severe impacts on human lives and infrastructure, also impacts on the environment, which needs to be assessed and documented. On September the 26th 2022, unknown perpetrators deliberately ruptured the two gas pipelines Nord Stream 1 and 2 with four coordinated explosions near a major chemical munition dump site near the Danish island of Bornholm in the Baltic Sea. While the massive release of natural gas into atmosphere raised serious concerns concerning the contribution to climate change-this paper assesses the overlooked direct impact of the explosions on the marine ecosystem. Seals and porpoises within a radius of four km would be at high risk of being killed by the shockwave, while temporary impact on hearing would be expected up to 50 km away. As the Baltic Proper population of harbour porpoises (Phocoena phocoena) is critically endangered, the loss or serious injury of even a single individual is considered a significant impact on the population. The rupture moreover resulted in the resuspension of 250000 metric tons of heavily contaminated sediment from deep-sea sedimentary basin for over a week, resulting in unacceptable toxicological risks towards fish and other biota in 11 km3 water in the area for more than a month.


Asunto(s)
Phocoena , Phocidae , Animales , Atmósfera , Ecosistema , Ríos
4.
PLoS One ; 9(12): e113318, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25478796

RESUMEN

Signal integration between IFNγ and TLRs in immune cells has been associated with the host defense against pathogens and injury, with a predominant role of STAT1. We hypothesize that STAT1-dependent transcriptional changes in vascular cells involved in cross-talk between IFNγ and TLR4, reflect pro-atherogenic responses in human atherosclerosis. Genome-wide investigation identified a set of STAT1-dependent genes that were synergistically affected by interactions between IFNγ and TLR4 in VSMCs. These included the chemokines Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules Cd40, Cd74, and antiviral and antibacterial genes Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Among the amplified genes was also Irf8, of which Ccl5 was subsequently identified as a new pro-inflammatory target in VSMCs and ECs. Promoter analysis predicted transcriptional cooperation between STAT1, IRF1, IRF8 and NFκB, with the novel role of IRF8 providing an additional layer to the overall complexity. The synergistic interactions between IFNγ and TLR4 also resulted in increased T-cell migration and impaired aortic contractility in a STAT1-dependent manner. Expression of the chemokines CXCL9 and CXCL10 correlated with STAT1 phosphorylation in vascular cells in plaques from human carotid arteries. Moreover, using data mining of human plaque transcriptomes, expression of a selection of these STAT1-dependent pro-atherogenic genes was found to be increased in coronary artery disease (CAD) and carotid atherosclerosis. Our study provides evidence to suggest that in ECs and VSMCs STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4, and identifies a STAT1-dependent gene signature that reflects a pro-atherogenic state in human atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Factor de Transcripción STAT1/genética , Receptor Toll-Like 4/genética , Aterosclerosis/patología , Células Sanguíneas , Quimiocina CXCL9/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor 1 Regulador del Interferón/biosíntesis , Interferón gamma/biosíntesis , Interferón gamma/genética , FN-kappa B/biosíntesis , FN-kappa B/genética , Fosforilación , Factor de Transcripción STAT1/biosíntesis , Transducción de Señal/genética , Receptor Toll-Like 4/biosíntesis
5.
JAKSTAT ; 1(4): 241-9, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24058779

RESUMEN

Atherosclerosis is characterized by early endothelial dysfunction and altered vascular smooth muscle cells (VSMCs) contractility. The forming atheroma is a site of excessive production of cytokines and inflammatory ligands by various cell types that mediate inflammation and immune responses. Key factors contributing to early stages of plaque development are IFNγ and TLR4. This review provides insight in the differential STAT1-dependent signal integration between IFNγ and TLR4 signals in vascular cells and atheroma interacting immune cells. This results in increased leukocyte attraction and adhesion and VSMC proliferation and migration, which are important characteristics of EC dysfunction and early triggers of atherosclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA