RESUMEN
BACKGROUND: Selenium deficiency appears to limit antioxidant defense in obese individuals. This study evaluated the association between adiposity indices, selenium status, and oxidative stress in obese women. METHODS: This was a cross-sectional study involving 139 women who were divided into the following two groups: the case group (obese women, n = 63) and the control group (normal-weight women, n = 76). Plasma, erythrocyte, and urinary selenium levels were determined using inductively coupled plasma optical emission spectrometry. Body weight, height, waist circumference, hip circumference and neck circumference were measured. Body mass index, waist/height ratio, conicity index, body fat index, body adiposity index, body circularity index, and visceral adiposity index were calculated. Plasma levels of thiobarbituric acid reactive substances were determined. The erythrocyte glutathione peroxidase activity was determined using an automatic biochemical analyzer and Ransel kit. RESULTS: Obese women had selenium deficiency characterized by reduction in plasma and erythrocyte concentrations (P < .001). The urinary selenium excretion was higher in the case group compared to the control group (P < .001). Adiposity indices values and plasma concentrations of thiobarbituric acid reactive substances were significantly elevated in obese women (P < .001). There was a significant association between adiposity indices and selenium status (P < .001), and between erythrocyte selenium and erythrocyte glutathione peroxidase activity (P < .001). CONCLUSION: Obese women evaluated in the study have reduced plasma and erythrocyte concentrations of selenium and an increased urinary excretion of selenium. The correlation analysis reveals an association between intra-abdominal fat accumulation and selenium metabolism and oxidative stress.
Asunto(s)
Eritrocitos/metabolismo , Glutatión Peroxidasa/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Selenio/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Adulto , Índice de Masa Corporal , Enfermedades Carenciales/metabolismo , Eritrocitos/enzimología , Femenino , Humanos , Obesidad Abdominal/metabolismo , Selenio/sangre , Selenio/deficiencia , Selenio/orina , Circunferencia de la Cintura , Relación Cintura-EstaturaRESUMEN
Encephalopathy related to Status Epilepticus during slow Sleep (ESES) is an age-related, epileptic syndrome, which associates cognitive/behavioral disturbances with a peculiar pattern of spike activity. One promising line of research is the study of ESES in cases of early thalamic lesions. We studied 7 ESES patients with unilateral thalamic lesions using magnetic resonance imaging to assess regional white matter (WM) and thalamic nuclei volume differences, and long-term electroencephalogram recordings to localize the epileptogenic cortex. N170 event-related potentials were used to demonstrate the dysfunctional character of the WM abnormalities. Diffusion-weighted images in a subset of 4 patients were used to parcellate the thalamus and evaluate volume asymmetries, based on cortical connectivity. Large WM regional atrophy in the hemisphere with the thalamic lesion was associated with both cortical dysfunction and epileptic activity. A correlation was demonstrated between lesions in the pulvinar and the mediodorsal thalamic nuclei and WM atrophy of the corresponding cortical projection areas. We propose that these abnormalities are due to the widespread structural disconnection produced by the thalamic lesions associated to a yet unknown age-dependent factor. Further exploration of WM regional atrophy association with the spike activity in other etiologies could lend support to the cortical disconnection role in ESES genesis.
Asunto(s)
Encefalopatías , Estado Epiléptico , Sustancia Blanca , Atrofia , Electroencefalografía , Humanos , Sueño , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
The objectives of this study were (1) to estimate the prevalence and concentration of the seven major Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157), collectively called STEC-7, on cattle hides collected in different seasons and beef processing plants; and (2) to determine associations of season, plant, and hide cleanliness scores with the prevalence and concentration of STEC-7. A total of 720 hide surface samples (240/season) were collected over three seasons (summer and fall 2015 and spring 2016) from beef cattle carcasses in four commercial processing plants in the United States. Samples were subjected to selective culture and spiral plating methods. Overall model-adjusted mean prevalence (95% confidence interval) was 0.3% (0.03-2.3%) for STEC O26; 0.05% (<0.01-8.5%) for STEC O45; 0.2% (0.02-1.9%) for STEC O103; 0.05% (<0.01-8.5%) for STEC O145; and 3.1% (0.6-15.2%) for STEC O157. Four percent of hide samples were enumerable for STEC O157; mean concentration (standard deviation) = 2.1 (0.7) log10 colony-forming units (CFUs)/100 cm2. No samples were enumerable for non-O157 STEC. Hide-on prevalence of STEC O157 and STEC non-O157 (specifically of STEC O103) was higher in summer and spring, respectively. Across seasons and plants, the most common STEC non-O157 serogroups in this study (O26 and O103) were associated with a higher prevalence of STEC O157. Season and plant played a role in prevalence and concentration of STEC in beef cattle hides, varying by serogroup. Tailoring mitigation strategies at the plant can be challenging and processors would benefit from supplementary preharvest interventions to reduce overall contamination pressure at the plant, especially in fall and spring months when hide-on prevalence of STEC non-O157 is higher.
Asunto(s)
Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Carne Roja/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Piel/microbiología , Mataderos , Animales , Bovinos , Recuento de Colonia Microbiana , Proteínas de Escherichia coli/genética , Heces/microbiología , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Reacción en Cadena de la Polimerasa , Prevalencia , Estaciones del Año , Serogrupo , Toxina Shiga/genética , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Estados Unidos/epidemiologíaRESUMEN
The biological formate hydrogenlyase (FHL) complex links a formate dehydrogenase (FDH) to a hydrogenase (H2ase) and produces H2 and CO2 from formate via mixed-acid fermentation in Escherichia coli. Here, we describe an electrochemical and a colloidal semiartificial FHL system that consists of an FDH and a H2ase immobilized on conductive indium tin oxide (ITO) as an electron relay. These in vitro systems benefit from the efficient wiring of a highly active enzyme pair and allow for the reversible conversion of formate to H2 and CO2 under ambient temperature and pressure. The hybrid systems provide a template for the design of synthetic catalysts and surpass the FHL complex in vivo by storing and releasing H2 on demand by interconverting CO2/H2 and formate with minimal bias in either direction.
RESUMEN
Coleoid cephalopods, including the European cuttlefish (Sepia officinalis), possess the remarkable ability to fully regenerate an amputated arm with no apparent fibrosis or loss of function. In model organisms, regeneration usually occurs as the induction of proliferation in differentiated cells. In rare circumstances, regeneration can be the product of naïve progenitor cells proliferating and differentiating de novo . In any instance, the immune system is an important factor in the induction of the regenerative response. Although the wound response is well-characterized, little is known about the physiological pathways utilized by cuttlefish to reconstruct a lost arm. In this study, the regenerating arms of juvenile cuttlefish, with or without exposure at the time of injury to sterile bacterial lipopolysaccharide extract to provoke an antipathogenic immune response, were assessed for the transcription of early tissue lineage developmental genes, as well as histological and protein turnover analyses of the resulting regenerative process. The transient upregulation of tissue-specific developmental genes and histological characterization indicated that coleoid arm regeneration is a stepwise process with staged specification of tissues formed de novo, with immune activation potentially affecting the timing but not the result of this process. Together, the data suggest that rather than inducing proliferation of mature cells, developmental pathways are reinstated, and that a pool of naïve progenitors at the blastema site forms the basis for this regeneration.
Asunto(s)
Envejecimiento , Extremidades/crecimiento & desarrollo , Regeneración/fisiología , Sepia/fisiología , AnimalesRESUMEN
Fecal bacteria, which reside in the gastrointestinal tract of cattle, can contaminate beef carcasses during processing. In beef cattle slaughter plants, the presence and concentrations of generic Escherichia coli, coliforms, Enterobacteriaceae (EB), and total aerobic bacteria are monitored as indicator organisms of fecal and environmental contamination. The objectives of this study were as follows: (1) to determine the concentrations of generic E. coli, coliforms, EB, and aerobic bacteria on beef carcasses at different processing points in Midwestern commercial beef slaughter plants during the summer, spring, and fall seasons; and (2) to estimate bacterial transfer on carcasses during the hide removal and evisceration processes. Hide and carcass surface sample swabs were collected from slaughtered cattle at four large commercial processing plants. At each plant visit (3 visits to each of the 4 plants) and during 3 seasons, 20 samples were collected at 5 points: hide-on (hide of animal near exsanguination pit), hide-off carcass, pre-evisceration carcass, postevisceration carcass, and postintervention carcass, for a total of 3600 samples. Bacterial concentrations were determined using 3M™ Petrifilm™ plates. Associations between season and processing plant with concentrations of E. coli, coliforms, EB, and total aerobic bacteria, overall, between hide-on and hide-off, and between pre- and post-evisceration, were evaluated using multilevel mixed-effects linear regression models. Bacterial concentrations on beef carcasses significantly decreased throughout processing. Moreover, hide removal was an important source of carcass contamination, given bacterial concentrations detected on hide-off carcass samples were the highest, and bearing in mind that carcass muscle surfaces should be sterile. Results from this study indicate that the interventions applied by the processing plants were effective, as they probably contributed to the significant reduction of bacterial concentrations of carcasses.
Asunto(s)
Bovinos/microbiología , Enterobacteriaceae/aislamiento & purificación , Contaminación de Alimentos , Microbiología de Alimentos , Carne/microbiología , Mataderos , Animales , Heces/microbiología , Industria de Procesamiento de Alimentos , Kansas , Estaciones del AñoRESUMEN
Solar-driven coupling of water oxidation with CO2 reduction sustains life on our planet and is of high priority in contemporary energy research. Here, we report a photoelectrochemical tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires a W-dependent formate dehydrogenase (FDH) cathode to a photoanode containing the photosynthetic water oxidation enzyme, Photosystem II, via a synthetic dye with complementary light absorption. From a biological perspective, the system achieves a metabolically inaccessible pathway of light-driven CO2 fixation to formate. From a synthetic point of view, it represents a proof-of-principle system utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid platform demonstrates the translatability and versatility of coupling abiotic and biotic components to create challenging models for solar fuel and chemical synthesis.
Asunto(s)
Dióxido de Carbono/química , Formiato Deshidrogenasas/química , Complejo de Proteína del Fotosistema II/química , Biocatálisis/efectos de la radiación , Colorantes/química , Colorantes/efectos de la radiación , Cianobacterias/enzimología , Desulfovibrio vulgaris/enzimología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Cetonas/química , Cetonas/efectos de la radiación , Luz , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/efectos de la radiación , Plastoquinona/química , Prueba de Estudio Conceptual , Pirroles/química , Pirroles/efectos de la radiación , Titanio/química , Agua/químicaRESUMEN
Japanese encephalitis virus (JEV) is associated with encephalitis in humans and reproductive and neurological illness in pigs. JEV has expanded beyond its native distribution in southeast Asia, with identifications in Europe (2010) and Africa (2016), and most recently, its spread into mainland Australia (2021-2022). The introduction of JEV into the United States (US) is a public health risk, and could also impact animal health and the food supply. To efficiently and cost-effectively manage risk, a better understanding of how and where diseases will be introduced, transmitted, and spread is required. To achieve this objective, we updated our group's previous qualitative risk assessment using an established semi-quantitative risk assessment tool (MINTRISK) to compare the overall rate of introduction and risk, including impacts, of JEV in seven US regions. The rate of introduction from the current region of distribution was considered negligible for the Northeast, Midwest, Rocky Mountain, West, Alaska, and Hawaii regions. The South region was the only region with a pathway that had a non-negligible rate of introduction; infected mosquito eggs and larvae introduced via imported used tires (very low; 95% uncertainty interval (UI) = negligible to high). The overall risk estimate for the South was very high (95% UI = very low to very high). Based on this risk assessment, the South region should be prioritized for surveillance activities to ensure the early detection of JEV. The assumptions used in this risk assessment, due to the lack of information about the global movement of mosquitoes, number of feral pigs in the US, the role of non-ardeid wild birds in transmission, and the magnitude of the basic reproduction ratio of JEV in a novel region, need to be fully considered as these impact the estimated probability of establishment.
RESUMEN
Identifying important parameters in crop models is critical for model application. This study conducted a sensitivity analysis of 23 selected parameters of the advanced rice model ORYZA-N using the Extended FAST method. The sensitivity analysis was applied for three rice types (single-season rice in cold regions and double-season rice (early rice and late rice) in subtropical regions) and two irrigation regimes (traditional flood irrigation (TFI) and shallow-wet irrigation (SWI)). This study analyzed the parameter sensitivity of six crop growth outputs at four developmental stages and yields. Furthermore, we compared the variation in parameter sensitivity on model outputs between TFI and SWI scenarios for single-season rice, early rice, and late rice. Results indicated that parameters RGRLMX, FRPAR, and FLV0.5 significantly affected all model outputs and varied over developmental stages. Water stress in paddy fields caused by water-saving irrigation had more pronounced effects on single-season rice than on double-season rice.
RESUMEN
Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome browsers to develop targeted physical mapping, providing also a general overview and examples about the possibilities regarding the use of Fluorescent In Situ Hybridization (FISH) using bacterial artificial chromosomes (BAC), simple sequence repeats (SSR) and rDNA probes, highlighting the potential of such studies for map integration and comparative genetics. As a case study, the available genome of soybean was accessed to show how the physical and in silico distribution of such sequences may be compared at different levels. Such evaluations may also be complemented by the identification of sequences beyond the detection level of cytological methods, here using members of the aquaporin gene family as an example. The proposed approach highlights the complementation power of the combination of molecular cytogenetics and computational approaches for the anchoring of coding or repetitive sequences in plant genomes using available genome browsers, helping in the determination of sequence location, arrangement and number of repeats, and also filling gaps found in computational pseudochromosome assemblies.
RESUMEN
The decrease of greenhouse gases such as CO2 has become a key challenge for the human kind and the study of the electrocatalytic properties of CO2-reducing enzymes such as formate dehydrogenases is of importance for this goal. In this work, we study the covalent bonding of Desulfovibrio vulgaris Hildenborough FdhAB formate dehydrogenase to chemically modified gold and low-density graphite electrodes, using electrostatic interactions for favoring oriented immobilization of the enzyme. Electrochemical measurements show both bioelectrocatalytic oxidation of formate and reduction of CO2 by direct electron transfer (DET). Atomic force microscopy and quartz crystal microbalance characterization, as well as a comparison of direct and mediated electrocatalysis, suggest that a compact layer of formate dehydrogenase was anchored to the electrode surface with some crosslinked aggregates. Furthermore, the operational stability for CO2 electroreduction to formate by DET is shown with approximately 100% Faradaic yield.
Asunto(s)
Desulfovibrio vulgaris/enzimología , Enzimas Inmovilizadas/química , Formiato Deshidrogenasas/química , Oro/química , Grafito/química , Dióxido de Carbono/química , Electrodos , Modelos Moleculares , Oxidación-ReducciónRESUMEN
Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence into susceptible regions is high, including in the United States (US), and is a reason of economic concern among the agricultural community, and to public health due to high morbidity and mortality rates in humans. While exploring the complexities of interactions involved with viral transmission, we proposed a new outlook on the role of vectors, hosts and the environment under changing conditions. For instance, the role of feral pigs may have been underappreciated in our previous work, given research keeps pointing to the importance of susceptible populations of wild swine in naïve regions as key elements for the introduction of emergent vector-borne diseases. High risk of JEV introduction has been associated with the transportation of infected mosquitoes via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and results from a qualitative risk assessment considered the risk of establishment to be negligible under the current conditions (environmental, vector, pathogen, and host). In this work, we discuss virus-vector-host interactions and ecological factors important for virus transmission and spread, review research on the risk of JEV introduction to the US considering the implications of risk dismissal as it relates to past experiences with similar arboviruses, and reflect on future directions, challenges, and implications of a JEV incursion.
RESUMEN
Amongst cephalopods microplastics have been reported only in jumbo squid gut. We investigated microplastics in the digestive system of wild cuttlefish (Sepia officinalis) as they are predators and prey and compared the stomach, caecum/intestine and digestive gland (DG) of wild and cultured animals, exposed to seawater from a comparable source. Fibers were the most common type (≈90% of total count) but were ≈2× higher in relation to body weight in wild vs. cultured animals. Fibers were transported to the DG where the count was ≈2× higher /g in wild (median 1.85 fibers/g) vs. cultured. In wild-caught animals the DG was the predominant location but in cultured animals the fibers were more evenly distributed in the digestive tract. The potential impact of microplastics on health of cuttlefish is discussed. Cuttlefish represent a previously unrecognized source of microplastic trophic transfer to fish and finding fibers in cultured animals has implications for aquaculture.
Asunto(s)
Sepia , Animales , Decapodiformes , Microplásticos , Plásticos , Agua de MarRESUMEN
The purpose of this risk assessment (RA) was to qualitatively estimate the risk of emergence of the Japanese encephalitis virus (JEV) in the United States (US). We followed the framework for RA of emerging vector-borne livestock diseases (de Vos et al. 2011), which consists of a structured questionnaire, whose answers to questions can be delivered in risk categories, descriptive statements, or yes or no type of answers, being supported by the literature. The most likely pathways of introduction of JEV identified were: (a) entry through infected vectors (by aircraft, cargo ships, tires, or wind); (b) import of infected viremic animals; (c) entry of viremic migratory birds; (d) import of infected biological materials; (e) import of infected animal products; (f) entry of infected humans; and (g) import/production of contaminated biological material (e.g., vaccines). From these pathways, the probability of introduction of JEV through infected adult mosquitoes via aircraft was considered very high and via ships/containers was deemed low to moderate. The probability of introduction via other pathways or modes of entry (vector eggs or larvae, hosts, and vaccines) was considered negligible. The probability of transmission of JEV was variable, ranging from low to high (in the presence of both competent vectors and hosts), depending on the area of introduction within the US. Lastly, the probability of establishment of JEV in the continental US was considered negligible. For that reason, we stopped the risk assessment at this point of the framework. This RA provides important information regarding the elements that contribute to the risk associated with the introduction of JEV in the US. This RA also indicates that infected mosquitoes transported in aircraft (and cargo ships) are the most likely pathway of JEV entry and therefore, mitigation strategies should be directed towards this pathway.
Asunto(s)
Culicidae/virología , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/epidemiología , Mosquitos Vectores/virología , Animales , Aves , Culex/virología , Encefalitis Japonesa/transmisión , Encefalitis Japonesa/virología , Humanos , Ganado , Probabilidad , Medición de Riesgo , Encuestas y Cuestionarios , Estados Unidos/epidemiologíaRESUMEN
Following a qualitative risk assessment, in which we identified and assessed all viable pathways for the introduction of the Japanese encephalitis virus (JEV) into the United States (US), we identified entry through infected vectors via aircraft and cargo ships as the most likely pathway, and thus considered it further in a quantitative risk assessment (QRA) model. The objective of this study was to evaluate the risk of introduction of JEV in the US via infected mosquitoes transported in aircraft and cargo ships arriving from Asia, using a QRA model. We created a stochastic model to quantify the probability of introduction of at least one infected mosquito in the continental US via aircraft and cargo ships, per at-risk period (March to October) or year, respectively. We modeled the following parameters: number of flights (per at-risk period, i.e., March to October) and cargo ships (per year) and per region, number of mosquitoes per flight and ship, number of mosquitoes that were not found and sensitivity of the mosquito collection method in aircraft, mosquito infection rates, and number of mosquitoes coming in aircraft per at-risk period (March to October) and cargo ships per year. Flight and cargo ship data pertained to years 2010-2016. For model building purposes, we only considered port-to-port vessels arriving from Asia to the US, we assumed that mosquitoes survive the trans-Pacific Ocean ship crossing and that the number of mosquitoes in cargo and passenger flights is similar. Our model predicted a very high risk (0.95 median probability; 95% CI = 0.80-0.99) of at least one infected mosquito being introduced in the US during the at-risk period, i.e., March to October, via aircraft transportation from JEV-affected countries in Asia. We also estimated that a median of three infected mosquitoes can enter the US during the at-risk period, i.e., March to October (95% CI = 1-7). The highest probability of introduction via aircraft was attributed to the Mediterranean California ecoregion (0.74; 95% CI = 0.50-0.90). We predicted, however, a negligible risk (0; 95% CI = 0.00-0.01) of at least one infected mosquito being introduced via cargo ships. Although the risk of introduction of JEV-infected mosquitoes by cargo ships was negligible, the risk via aircraft was estimated to be high. Our findings indicate the need to prioritize JEV prevention and control methods for aircraft-based pathways, such as aircraft disinfection. The quantitative estimates provided in this study are of interest to public health entities and other stakeholders, as they may support future interventions for preventing JEV introduction, as well as other vector-borne diseases, in the US and other countries.
Asunto(s)
Aeronaves , Culicidae/virología , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa/transmisión , Navíos , Animales , California/epidemiología , Encefalitis Japonesa/epidemiología , Medición de Riesgo , Procesos Estocásticos , Estados Unidos/epidemiologíaRESUMEN
Japanese encephalitis virus (JEV) is a virus of the Flavivirus genus that may result in encephalitis in human hosts. This vector-borne zoonosis occurs in Eastern and Southeastern Asia and an intentional or inadvertent introduction into the United States (US) would have major public health and economic consequences. The objective of this study was to gather, appraise, and synthesize primary research literature to identify and quantify vector and host competence for JEV, using a systematic review (SR) of the literature. After defining the research question, we performed a search in selected electronic databases and journals. The title and abstract of the identified articles were screened for relevance using a set of exclusion and inclusion criteria, and relevant articles were subjected to a risk of bias assessment, followed by data extraction. Data were extracted from 171 peer-reviewed articles. Most studies were observational studies (59.1%) and reported vector competence (60.2%). The outcome measures reported pertained to transmission efficiency, host preference, and vector susceptibility to infection within vector competence; and susceptibility to infection within host competence. Regarding vector competence, the proportion of JEV infection reported across all 149 mosquito species in all observational studies ranged from 0 to 100%. In experimental studies, infection, dissemination, and transmission rates varied between 0 and 100%. Minimum infection rates (MIR) varied between 0 and 333.3 per 1000 mosquitoes. Maximum likelihood estimation (MLE) values ranged from 0 to 53.8 per 1000 mosquitoes. The host species in which mosquitoes mostly fed consisted of pigs and cattle (total of 84 blood meals taken by mosquitoes from each of these host species). As for host competence, the proportion of JEV infection varied between 0 (in rabbits, reptiles, and amphibians) and 88.9% (cattle). This SR presents comprehensive data on JEV vector and host competence, which can be used to quantify risks associated with the introduction of JEV into the US.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/veterinaria , Mosquitos Vectores/virología , Animales , Bovinos , Culex/virología , Vectores de Enfermedades , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/transmisión , Humanos , Conejos , ZoonosisRESUMEN
The objective of this work was to summarize and quantify Japanese encephalitis virus (JEV) infection, dissemination, and transmission rates in mosquitoes, using a meta-analysis approach. Data were obtained from experimental studies, gathered by means of a systematic review of the literature. Random-effects subgroup meta-analysis models by mosquito species were fitted to estimate pooled estimates and to calculate the variance between studies for three outcomes of interest: JEV infection, dissemination, and transmission rates in mosquitoes. To identify sources of heterogeneity among studies and to assess the association between different predictors (mosquito species, virus administration route, incubation period, and diagnostic method) with the outcome JEV infection rate in vectors, we fitted univariable meta-regression models. Mosquito species and administration route represented the main sources of heterogeneity associated with JEV infection rate in vectors. This study provided summary effect size estimates to be used as reference for other investigators when assessing transmission efficiency of vectors and explored sources of variability for JEV infection rates in vectors. Because transmission efficiency, as part of vector competence assessment, is an important parameter when studying the relative contribution of vectors to JEV transmission, our findings contribute to further our knowledge, potentially moving us toward more informed and targeted actions to prevent and control JEV in both affected and susceptible regions worldwide.
Asunto(s)
Aedes/virología , Culex/virología , Encefalitis Japonesa/transmisión , Modelos Estadísticos , Mosquitos Vectores/virología , Ochlerotatus/virología , Animales , Asia/epidemiología , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/epidemiología , Femenino , HumanosRESUMEN
Organic solvents can change CNS sensory and motor function. Eye-movement analyses can be important tools when investigating the neurotoxic changes that result from chronic organic solvent exposure. The current research measured the eye-movement patterns of men and women with and without histories of chronic organic solvent exposure. A total of 44 volunteers between 18 and 41 years old participated in this study; 22 were men (11 exposed and 11 controls), and 22 were women (11 exposed and 11 controls). Eye movement was evaluated using a 250-Hz High-Speed Video Eye Tracker Toolbox (Cambridge Research Systems) via an image of a maze. Specific body indices of exposed and non-exposed men and women were measured with an Inbody 720 to determine whether the differences in eye-movement patterns were associated with body composition. The data were analyzed using IBM SPSS Statistics version 20.0.0. The results indicated that exposed adults showed significantly more fixations (t = 3.82; p = 0.001; r = 0.51) and longer fixations (t = 4.27; p = 0.001, r = 0.54) than their non-exposed counterparts. Comparisons within men (e.g., exposed and non-exposed) showed significant differences in the number of fixations (t = 2.21; p = 0.04; r = 0.20) and duration of fixations (t = 3.29; p = 0.001; r = 0.35). The same was true for exposed vs. non-exposed women, who showed significant differences in the number of fixations (t = 3.10; p = 0.001; r = 0.32) and fixation durations (t = 2.76; p = 0.01; r = 0.28). However, the results did not show significant differences between exposed women and men in the number and duration of fixations. No correlations were found between eye-movement pattern and body composition measures (p > 0.05). These results suggest that chronic organic solvent exposure affects eye movements, regardless of sex and body composition, and that eye tracking contributes to the investigation of the visual information processing disorders acquired by workers exposed to organic solvents.
RESUMEN
BACKGROUND: Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. METHODS: Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. RESULTS: Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. CONCLUSIONS: Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this work provides useful guidelines when interpreting vector and host infection proportions or prevalence from observational studies, and contributes to further our understanding of vector and vertebrate host competence for JEV, elucidating information on the relative importance of vectors and hosts on JEV introduction and transmission.