Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 107(4): 2207-2230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37939841

RESUMEN

Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.


Asunto(s)
Enfermedades de los Bovinos , Dermatitis , Dermatitis Digital , Enfermedades del Pie , Úlcera del Pie , Pezuñas y Garras , Úlcera Cutánea , Bovinos/genética , Animales , Enfermedades del Pie/genética , Enfermedades del Pie/veterinaria , Estudio de Asociación del Genoma Completo/veterinaria , Dermatitis Digital/genética , Úlcera/veterinaria , Hiperplasia/veterinaria , Enfermedades de los Bovinos/genética , Fenotipo , Úlcera del Pie/veterinaria , Genómica , Dermatitis/veterinaria , Hemorragia/veterinaria , América del Norte
2.
J Dairy Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788846

RESUMEN

This study aimed to evaluate the impact of copy number variants (CNVs) on 13 reproduction and 12 disease traits in Holstein cattle. Intensity signal files containing Log R ratio and B allele frequency information from 13,730 Holstein animals genotyped with a 95K SNP panel, and 8,467 Holstein animals genotyped with a 50K SNP panel were used to identify the CNVs. Subsequently, the identified CNVs were validated using whole genome sequence data from 126 animals, resulting in 870 high-confidence CNV regions (CNVRs) on 12,131 animals. Out of these, 54 CNVRs had frequencies higher than or equal to 1% in the population and were used in the genome-wide association analysis (one CNVR at a time, including the G matrix). Results revealed that 4 CNVRs were significantly (p-value < 3.7 × 10-5) associated with at least one of the traits analyzed in this study. Specifically, 2 CNVRs were associated with 3 reproduction traits (i.e., calf survival, first service to conception, and non-return rate), and 2 CNVRs were associated with 2 disease traits (i.e., metritis and retained placenta). These CNVRs harbored genes implicated in immune response, cellular signaling, and neuronal development, supporting their potential involvement in these traits. Further investigations to unravel the mechanistic and functional implications of these CNVRs on the mentioned traits are warranted.

3.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37690718

RESUMEN

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Asunto(s)
Gases de Efecto Invernadero , Femenino , Animales , Bovinos , Genómica , Genotipo , Australia , Metano
4.
Transl Anim Sci ; 7(1): txad102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841322

RESUMEN

The decision of premature culling cows directly impacts the profitability of dairy farms. A comprehensive characterization of the primary causes of culling reasons would greatly improve both management and selection objectives in dairy cattle breeding programs. Therefore, this study aimed to analyze the temporal frequencies of 34 culling reasons in Canadian Holstein cows. After data editing and quality control, records from 3,096,872 cows culled from 9,683 herds spread across Canada were used for the analyses covering the periods from 1996 to 2020. Reproductive issues were the main culling reason accounting for 23.02%, followed by milk production (20.82%), health (20.39%), conformation problems (13.69%), economic factors (13.10%), accidents (5.67%), age-related causes (1.67%), and workability (1.63%). Nearly fifty-eight percent of cows were culled after 47 months of age. The observed frequencies of culling due to economic factors were lower than expected from 1996 to 2014 and higher than expected between 2015 and 2020. Reproduction issues had the highest culling frequencies during fall (24.54%), winter (24.02%), and spring (22.51%), while health issues were the most frequent (22.51%) culling reason in the summer season. Health issues (25.50%) and milk production (27.71%) were the most frequent culling reasons in the provinces of Quebec and Ontario, respectively. Reproductive issues showed the highest frequency across climates based on the Köppen climate classification, except for Csb (Dry-summer subtropical or Mediterranean climate) and Bsk (Middle latitude steppe climate), which correspond to small regions in Canada, where production was the most frequent culling reason (29.42% and 21.56%, respectively). Reproductive and milk performance issues were the two main culling reasons in most ecozones, except in Boreal Shield and Atlantic Marine, where health issues had the highest frequencies (25.12 and 23.75%, respectively). These results will contribute to improving management practices and selective decisions to reduce involuntary culling of Holstein cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA