Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892146

RESUMEN

Advanced oxidation processes, including photocatalysis, have been proven effective at organic dye degradation. Tailored porous materials with regulated pore size, shape, and morphology offer a sustainable solution to the water pollution problem by acting as support materials to grafted photocatalytic nanoparticles (NPs). This research investigated the influence of pore and particle sizes of photocatalytic MICROSCAFS® on the degradation of methyl orange (MO) in aqueous solution (10 mg/L). Photocatalytic MICROSCAFS® are made of binder-less supported P25 TiO2 NPs within MICROSCAFS®, which are silica-titania microspheres with a controlled size and interconnected macroporosity, synthesized by an adapted sol-gel method that involves a polymerization-induced phase separation process. Photocatalytic experiments were performed both in batch and flow reactors, with this latter one targeting a proof of concept for continuous transformation processes and real-life conditions. Photocatalytic degradation of 87% in 2 h (batch) was achieved, using a calibrated solar light simulator (1 sun) and a photocatalyst/pollutant mass ratio of 23. This study introduces a novel flow kinetic model which provides the modeling and simulation of the photocatalytic MICROSCAFS® performance. A scavenger study was performed, enabling an in-depth mechanistic understanding. Finally, the transformation products resulting from the MO photocatalytic degradation were elucidated by high-resolution mass spectrometry experiments and subjected to an in silico toxicity assessment.


Asunto(s)
Compuestos Azo , Luz Solar , Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Purificación del Agua/métodos , Titanio/química , Contaminantes Químicos del Agua/química , Porosidad , Compuestos Azo/química , Microesferas , Dióxido de Silicio/química , Fotólisis , Cinética , Procesos Fotoquímicos
2.
Mar Drugs ; 21(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38132920

RESUMEN

Microbial life present in the marine environment has to be able to adapt to rapidly changing and often extreme conditions. This makes these organisms a putative source of commercially interesting compounds since adaptation provides different biochemical routes from those found in their terrestrial counterparts. In this work, the goal was the identification of a marine bacterium isolated from a sample taken at a shallow water hydrothermal vent and of its red product. Genomic, lipidomic, and biochemical approaches were used simultaneously, and the bacterium was identified as Serratia rubidaea. A high-throughput screening strategy was used to assess the best physico-chemical conditions permitting both cell growth and production of the red product. The fatty acid composition of the microbial cells was studied to assess adaptation at the lipid level under stressful conditions, whilst several state-of-the-art techniques, such as DSC, FTIR, NMR, and Ultra-High Resolution Qq-Time-of-Flight mass spectrometry, were used to characterize the structure of the pigment. We hypothesize that the pigment, which could be produced by the cells up to 62 °C, is prodigiosin linked to an aliphatic compound that acts as an anchor to keep it close to the cells in the marine environment.


Asunto(s)
Respiraderos Hidrotermales , Agua , Serratia , Prodigiosina/química
3.
Org Biomol Chem ; 19(44): 9711-9722, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34726223

RESUMEN

The DABCO-catalyzed [3 + 3] annulation between 3-nitro-2H-chromenes and benzyl 2,3-butadienoate has been developed as a route to 5H-chromeno[3,4-b]pyridine derivatives. Under optimal reaction conditions, 5H-chromeno[3,4-b]pyridines incorporating two allenoate units were obtained in moderate to good yields (30-76%). The same type of transformation could be carried out using butynoates as allene surrogates. Mechanistic studies by mass spectrometry allowed the identification of the key intermediates involved in the reaction mechanism. The reported synthetic methodology represents an entirely new approach for the synthesis of the 5H-chromeno[3,4-b]pyridine core structure based on allene chemistry.

4.
Molecules ; 25(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085515

RESUMEN

This work provides new knowledge on natural yellows used in Iran. Seven biological sources were selected based on interviews with dye masters in Isfahan workshops (Iran). Delphinium semibarbatum, Eremostachys laevigata, Prangos ferulacea, Morus alba, Pistacia vera, Punica granatum, and Vitis vinifera are currently used in these workshops. Aiming to study the dye composition of wool samples dyed with the extracts of the selected biological sources and the changes induced by the dyeing procedures in the original chemical composition of the plant extract, raw materials and dyed wool (by us and in the workshops) were analyzed by HPLC-DAD and UHPLC-HRMS/MS. The main yellows for E. laevigata are luteolin-O-glycosides. In the other plant sources, the main chromophores are based on 3-O-glycosides of kaempferol, quercetin, and isorhamnetin. In pistachio hulls, myricitin derivatives were detected and we propose their use as markers. Generally, the solutions extracted from the wool displayed a higher amount of more polar compounds, but also a higher amount of aglycones. Importantly, the chromatographic profiles of the samples we prepared compared well with 17th c. yellows in Persian carpets, and therefore can be considered highly characterized references for the study of Persian yellows.


Asunto(s)
Colorantes/historia , Espectrometría de Masas , Animales , Cromatografía Líquida de Alta Presión , Color , Colorantes/química , Flavonoides/química , Geografía , Historia del Siglo XXI , Irán , Extractos Vegetales/química , Plantas/química , Textiles , Lana
5.
J Environ Sci (China) ; 82: 113-123, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31133256

RESUMEN

Duloxetine (DUL), an antidepressant drug, has been detected in surface water and wastewater effluents, however, there is little information on the formation of its transformation products (TPs). In this work, hydrolysis, photodegradation (UV irradiation) and chlorination experiments were performed on spiked distillated water, under controlled experimental conditions to simulate abiotic processes that can occur in the environment and wastewater treatment plants (WWTPs). Eleven TPs, nine from reaction with UV light and two from chlorine contact, were formed and detected by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, and nine of them had their chemical structures elucidated upon analyses of their fragmentation patterns in MS/MS spectra. The formation and degradation of the TPs were observed. The parent compound was completely degraded after 30 min in photodegradation and after 24 hr in chlorination. Almost all TPs were completely degraded in the experiments. The ecotoxicity and mutagenicity of the TPs were predicted based on several in silico models and it was found that a few of these products presented more ecotoxicity than DUL itself and six TPs showed positive mutagenicity. Finally, wastewater samples were analyzed and DUL and one TP, possibly formed by chlorination process, were detected in the effluent, which showed that WWTP not only did not remove DUL, but also formed a TP.


Asunto(s)
Clorhidrato de Duloxetina/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Simulación por Computador , Clorhidrato de Duloxetina/análisis , Fotólisis , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
6.
Org Biomol Chem ; 15(21): 4667-4680, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28517004

RESUMEN

The synthesis and anticancer evaluation of novel N-glycosyl derivatives containing N-substituted glucuronamide moieties, as nucleoside analogs or as prospective mimetics of glycosyl phosphates or of nucleotides, is reported. These compounds comprise N-anomerically-linked nucleobases or motifs that are surrogates of a phosphate group, such as sulfonamide or phosphoramidate moieties. 1-Sulfonamido glucuronamides containing N-benzyl, N-propargyl or N-dodecyl carboxamide units were synthesized through glycosylation of methanesulfonamide with tetra-O-acetyl glucuronamides. 1-Azido glucuronamides were accessed by microwave-assisted reactions of tetra-O-acetyl glucuronamides with TMSN3 and were further converted into N-glycosylphosphoramidates by treatment with trimethyl phosphite. Potential glucuronamide-based nucleotide mimetics comprising both an anomeric sulfonamide/phosphoramidate group and a benzyltriazolylmethyl amide system at C-5, as nucleobase mimetics, were synthesized via 'click' cycloaddition of N-propargyl glucuronamide derivatives with benzyl azide. N-Dodecyl tetra-O-acetyl glucuronamides were converted into uracil and purine nucleosides via N-glycosylation of the corresponding silylated nucleobases. Biological screening revealed significant antiproliferative activities of the N-dodecyl glucuronamide-containing sulfonamide, phosphoramidate and nucleosides in K562 and MCF-7 cells. The highest effect was exhibited by the N9-linked purine nucleoside in the breast cancer cell MCF-7 with a GI50 value similar to that of clinically used 5-fluorouracil. Immunoblotting and cell cycle analysis of K562 cells treated with the most active compound as well as evaluation of the effect of this nucleoside on the activities of caspases 3 and 7 showed induction of apoptosis as the mechanism of cell death.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Glucuronatos/síntesis química , Glucuronatos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Glucuronatos/química , Glicosilación , Humanos , Células K562 , Células MCF-7
7.
J Food Sci Technol ; 54(13): 4362-4369, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29184242

RESUMEN

Ultrasound-assisted extraction was used to investigate the polyphenolic compounds, particularly anthocyanins, present in myrtle alcoholic extracts. This type of extract is typical in the making of liqueurs obtained from herbs or plants, especially medicinal plants. The leaf extracts were found to contain flavonoids from the quercetin and myricetin families. Besides these, the berry extracts also showed the presence of anthocyanins, hydrolysable tannins and quinic acid. The antioxidant capacity was studied using the ORAC and TEAC methods and the polyphenol content was measured using the Folin-Ciocalteu method. The results showed that the values produced by the ORAC and TEAC methods were in agreement and that the antioxidant capacity correlated with the polyphenol content. The results showed that the leaf extracts exhibited higher antioxidant capacity than the berry extracts. The extraction method was easily implementable, and proved to be a swift method for obtaining bioactive compounds from vegetable matrices.

8.
Foods ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123641

RESUMEN

This study aims to develop purple-coloured polymeric coatings using natural anthocyanin and desoxyanthocianidins (3-DXA) colourants for application to chocolate almonds. The objective is to achieve a stable and uniform colour formulation throughout processing and storage, enhancing the appearance and durability of the almonds to appeal to health-conscious consumers and align with market demands. Plant materials like sweet potato pulp, sweet potato peel, radish peel, black carrot, and sorghum were employed to obtain the desired purple hue. Anthocyanidins and 3-DXA were extracted from the matrices using solvent extraction and ultrasound-assisted methods at different pH values. High-performance liquid chromatography with diode array detection (HPLC-DAD) and high-resolution tandem mass spectrometry (HRMS/MS) were used to identify the compounds in the extracts. The highest antioxidant capacities, as measured by the DPPH• and FRAP methods, were observed in purple sweet potato and dye factory extracts, respectively; meanwhile, sorghum extract inhibited both α-amylase and α-glucosidase, indicating its potential for managing postprandial hyperglycemia and type 2 diabetes. The degradation kinetics of coloured coatings in sugar syrup formulations with anthocyanins and 3-DXA revealed that locust bean gum offered the best colour stabilization for plant extracts, with sorghum extracts showing the highest and black carrot extracts the lowest colour variation when coated with Arabic gum. Sweet potato pulp extracts exhibited less colour variation in sugar pastes, both with and without blue spirulina dye, compared to factory dye, highlighting their potential as a more stable and suitable alternative for colouring purple almonds, particularly over a five-month storage period. This study supports sustainable practices in the confectionery industry while aligning with consumer preferences for healthier and environmentally friendly products.

9.
ChemMedChem ; 19(3): e202300608, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095428

RESUMEN

The synthesis and antiproliferative evaluation of novel d-glucopyranuronamide-containing nucleosides is described. Based on our previously reported anticancer d-glucuronamide-based nucleosides, new analogues comprising N/O-dodecyl or N-propargyl substituents at the glucuronamide unit and anomerically-N-linked 2-acetamido-6-chloropurine, 6-chloropurine or 4-(6-chloropurinyl)methyl triazole motifs were synthesized in 4-6 steps starting from acetonide-protected glucofuranurono-6,3-lactone. The methodologies were based on the access to N-substituted glycopyranuronamide precursors, namely 1,2-O-acetyl derivatives or glucuronoamidyl azides for further nucleobase N-glycosylation or 1,3-dipolar cycloaddition with N9 - and N7 -propargyl-6-chloropurines, respectively. N-Propargyl glucuronamide-based N9 -purine nucleosides were converted into (triazolyl)methyl amide-6,6-linked pseudodisaccharide nucleosides via cycloaddition with methyl 6-azido-glucopyranoside. A CuI/Amberlyst A-21 catalytic system employed in the cycloaddition reactions also effected conversion into 6-dimethylaminopurine nucleosides. Antiproliferative evaluation in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells revealed significant effects exhibited by the synthesized monododecylated purine-containing nucleosides. A N-propargyl 3-O-dodecyl glucuronamide derivative comprising a N9 -ß-linked 6-chloropurine moiety was the most active compound against MCF-7 cells (GI50 =11.9 µM) while a related α-(purinyl)methyltriazole nucleoside comprising a N7 -linked 6-chloropurine moiety exhibited the highest activity against K562 cells (GI50 =8.0 µM). Flow cytometry and immunoblotting analysis of apoptosis-related proteins in K562 cells treated with the N-propargyl 3-O-dodecyl glucuronamide-based N9 -linked 6-chloropurine nucleoside indicated that it acts via apoptosis induction.


Asunto(s)
Amidas , Nucleósidos , Humanos , Nucleósidos/farmacología , Amidas/farmacología , Nucleósidos de Purina , Glucuronatos
10.
Sci Rep ; 14(1): 2219, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278870

RESUMEN

The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 µg/mL when combined with colistin 0.5 µg/mL against CRPA or 0.25 µg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.


Asunto(s)
Acinetobacter baumannii , Polimixinas , Humanos , Polimixinas/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Células CACO-2 , Antibacterianos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
11.
Foods ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672837

RESUMEN

This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The antioxidant and antimicrobial activities were determined by using relevant assays. The chemical profiles showed that glucosamine, gluconasturtiin, and neoglucobrassin were the most abundant GLS in the extracts from the turnip accessions. Minor forms of GLS include gluconapoleiferin, glucobrassicanapin, glucoerucin, glucobrassin, and 4-hydroxyglucobrassin. Both species exhibited strong antioxidant activity, attributed to glucosinolates and phenolic compounds. The methanol extracts of Brassica rapa accessions were assessed against a panel of five Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar, and Yersinia enterocolitica) and three Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus). The extracts exhibited activity against S. enterica and S. aureus, and two showed inhibitory activity against E. coli and Y. enterocolitica. This study provides valuable insights into the chemical composition and biological properties of Brassica rapa and Brassica napus collections in Portugal. The selected accessions can constitute potential sources of natural antioxidants and bioactive compounds, which can be used in breeding programs and improving human health and to promote healthy food systems.

12.
ACS Appl Mater Interfaces ; 16(11): 13411-13421, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456838

RESUMEN

The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(µ-PTA)]n·5nH2O (1) and [Ag2(µ-ada)(µ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.


Asunto(s)
Plata , Virus , Humanos , Plata/farmacología , Plata/química , Polímeros/farmacología , Polímeros/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Antivirales/farmacología , Almidón , Proteínas Sanguíneas , Chaperonas Moleculares
13.
J Phys Chem A ; 117(51): 14056-64, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24308386

RESUMEN

The radical anions of five bis(azobenzene) and one tris(azobenzene) compounds were studied by optical and electron paramagnetic resonance (EPR) spectroscopies in polar aprotic solvents. The radicals with planar or almost-planar bridges are charge-delocalized mixed-valence species. Localization of charge occurs only on radicals with highly twisted biphenyl bridges. The electronic coupling between the azobenzene charge-bearing units, calculated as half the energy of the intervalence band for the charge-delocalized and by the Hush equation for the charge-localized radicals, decreases with the distance and torsion angle between azobenzene units. These radicals have smaller electronic couplings between charge-bearing units than other mixed-valence organic radicals with similar bridges. However, the application of a three-stage model to the tris(azobenzene) radical anion intervalence band yields an electronic coupling between consecutive azobenzenes that is higher than in any of the bis(azobenzene) radicals studied.

14.
Molecules ; 18(5): 4955-71, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23624649

RESUMEN

Nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) used against HIV-1. Currently, NVP is the most widely used anti-HIV drug in developing countries, both in combination therapy and to prevent mother-to-child transmission of HIV. Despite its efficacy against HIV, NVP produces a variety of toxic responses, including hepatotoxicity and skin rash. It is also associated with increased incidences of hepatoneoplasias in rodents. In addition, epidemiological data suggest that NNRTI use is a risk factor for non-AIDS-defining cancers in HIV-positive patients. Current evidence supports the involvement of metabolic activation to reactive electrophiles in NVP toxicity. NVP metabolism includes oxidation to 12-hydroxy-NVP; subsequent Phase II sulfonation produces an electrophilic metabolite, 12-sulfoxy-NVP, capable of reacting with DNA to yield covalent adducts. Since 2'-deoxythymidine (dT) adducts from several alkylating agents are regarded as having significant mutagenic/carcinogenic potential, we investigated the formation of NVP-dT adducts under biomimetic conditions. Toward this goal, we initially prepared and characterized synthetic NVP-dT adduct standards using a palladium-mediated Buchwald-Hartwig coupling strategy. The synthetic standards enabled the identification, by LC-ESI-MS, of 12-(2'-deoxythymidin-N3-yl)-nevirapine (N3-NVP-dT) in the enzymatic hydrolysate of salmon testis DNA reacted with 12-mesyloxy-NVP, a synthetic surrogate for 12-sulfoxy-NVP. N3-NVP-dT, a potentially cytotoxic and mutagenic DNA lesion, was also the only dT-specific adduct detected upon reaction of dT with 12-mesyloxy-NVP. Our data suggest that N3-NVP-dT may be formed in vivo and play a role in the hepatotoxicity and/or putative hepatocarcinogenicity of NVP.


Asunto(s)
Fármacos Anti-VIH , Nevirapina/análogos & derivados , Inhibidores de la Transcriptasa Inversa , Timidina/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Estructura Molecular , Nevirapina/síntesis química , Nevirapina/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química
15.
Materials (Basel) ; 16(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903166

RESUMEN

Aiming to improve their photocatalytic performance, titanate nanowires (TNW) were modified by Fe and Co (co)-doping, FeTNW, CoTNW and CoFeTNW samples, using a hydrothermal methodology. XRD characterization agrees with the existence of Fe and Co in the lattice structure.and the existence of Co2+ together with the presence of Fe2+ and Fe3+ in the structure was confirmed by XPS. The optical characterization of the modified powders shows the impact of the d-d transitions of both metals in the absorption properties of TNW, mainly in the creation of additional 3d energetic levels within the prohibited zone. The effect of the doping metal(s) in the recombination rate of photo-generated charge carriers suggests a higher impact of Fe presence when compared to Co. The photocatalytic characterization of the prepared samples was evaluated via the removal of acetaminophen. Furthermore, a mixture containing both acetaminophen and caffeine, a well-known commercial combination, was also tested. CoFeTNW sample was the best photocatalyst for the degradation of acetaminophen in both situations. A mechanism for the photo-activation of the modified semiconductor is discussed and a model proposed. It was concluded that both Co and Fe are essential, within the TNW structure, for the successful removal of acetaminophen and caffeine.

16.
Bioengineering (Basel) ; 10(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37370574

RESUMEN

Polyhydroxyalkanoates (PHA) are biopolyesters regarded as an attractive alternative to petroleum-derived plastics. Nitrogen limitation and phosphate limitation in glucose cultivations were evaluated for poly(3-hydroxybutyrate) (P(3HB)) production by Halomonas elongata 1H9T, a moderate halophilic strain. Co-production of P(3HB) and gluconic acid was observed in fed-batch glucose cultivations under nitrogen limiting conditions. A maximum P(3HB) accumulation of 53.0% (w/w) and a maximum co-production of 133 g/L of gluconic acid were attained. Fed-batch glucose cultivation under phosphate limiting conditions resulted in a P(3HB) accumulation of only 33.3% (w/w) and no gluconic acid production. As gluconic acid is a valuable organic acid with extensive applications in several industries, this work presents an interesting approach for the future development of an industrial process aiming at the co-production of an intracellular biopolymer, P(3HB), and a value-added extracellular product, gluconic acid.

17.
Foods ; 12(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37107441

RESUMEN

The encapsulation of the 3-deoxyanthocyanidins (3-DXA) red dye, extracted from sorghum (Sorghum bicolor L.) leaves, was explored for food application. The extracts showed antioxidant activity at concentrations ranging from 803 to 1210 µg mL-1 and did not reveal anti-inflammatory or cytotoxic properties, indicating their potential for food application. Encapsulation was performed with two carrier agents (maltodextrin and Arabic gum) in different proportions (1:1, 2:1 and 1.5:2.5 (w/w)). The microparticles produced by freeze-drying and spray-drying were studied according to the concentration of the dye, the encapsulation efficiency, the process yield, the solubility and the colour of the powders. The dye extracts are released from the microparticles at different pHs. The variation in ratio composition of the 3-DXA encapsulation was assessed by principal component analysis (PCA) using data from ten physicochemical parameters. The results indicated that the maltodextrin at the 2:1 ratio had a higher dye concentration and total phenolic content (TPC) at pH 6. This ratio was selected to produce the microparticles by freeze-drying and spray-drying, and the particles were used in the temperature stability tests at pH 6. The results suggest that the freeze-drying process offers better protection to 3-DXA, with a degradation percentage of 22% during the heating period (80 °C for 18 h), compared to the non-encapsulated dye (48%). However, there were no significant differences between the two polymeric agents. The non-encapsulated 3-DXA was evaluated as control and lost 48% of the total colour with the same treatment. Red dyes from sorghum leaf by-products may constitute promising ingredients for the food industry and increase the value of this crop.

18.
ACS Omega ; 8(23): 20755-20766, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323376

RESUMEN

Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient's survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.

19.
Front Bioeng Biotechnol ; 10: 934432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299289

RESUMEN

Polyhydroxyalkanoate (PHA) production using halophilic bacteria has been revisited because less severe operational conditions with respect to sterility can be applied, also alleviating production costs. Halomonas boliviensis was selected because it is a moderate halophile able to grow and attain high poly-3-hydroxybutyrate (P3HB) contents under 5-45 g/L NaCl concentrations, conditions that discourage microbial contamination. Industrial residues of the red alga Gelidium corneum after agar extraction were used as sugar platform to reduce costs associated with the carbon source. These residues still comprise a high carbohydrate content (30-40% w/w) of mainly cellulose, and their hydrolysates can be used as substrates for the bioproduction of value-added products. Preliminary assays using glucose were carried out to determine the best conditions for growth and P3HB production by H. boliviensis in bioreactor fed-batch cultivations. Two strategies were addressed, namely nitrogen or phosphorus limitation, to promote polymer accumulation. Similar P3HB cell contents of 50% (gpolymer/gCDW) and yields Y P3HB/glucose of 0.11-0.15 g polymer/g glucose were attained under both conditions. However, higher specific productivities were reached under P-limitation, and thus, this strategy was adopted in the subsequent study. Two organic acids, resulting from glucose metabolism, were identified to be gluconic and 2-oxoglutaric acid. Reducing the oxygen concentration in the cultivation medium to 5% sat was found to minimize organic acid production and enhance the yield of polymer on sugar to 0.20 gP3HB/gglucose. Finally, fed-batch cultivations using G. corneum hydrolysates as the only C-source achieved an overall volumetric productivity of 0.47 g/(L.h), 40% polymer accumulation, and negligible gluconic acid production.

20.
Pharmaceutics ; 14(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35890283

RESUMEN

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA