Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Metabolites ; 12(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35629920

RESUMEN

Thyroid hormone (TH) signaling controls muscle progenitor cells differentiation. However, inflammation can alter muscle TH signaling by modulating the expression of TH transporters (Slc16a2), receptors (Thra1), and deiodinase enzymes (Dio2 and Dio3). Thus, a proinflammatory environment could affect myogenesis. The role of a low-grade inflammatory milieu in TH signaling during myogenesis needs further investigation. Herein, we aimed to study the impact of the bacterial lipopolysaccharide (LPS)-induced inflammatory stimulus on the TH signaling during myogenesis. C2C12 myoblasts differentiation was induced without (CTR) or with 10 ng/mL LPS presence. The myoblasts under LPS stimulus release the proinflammatory cytokines (IL-6 and IL-1ß) and chemokines (CCL2 and CXCL-1). LPS decreases Myod1 expression by 28% during the initial myogenesis, thus reducing the myogenic stimulus. At the same time, LPS reduced the expression of Dio2 by 41% but doubled the D2 enzymatic activity. The late differentiation was not affected by inflammatory milieu, which only increased the Slc16a2 gene expression by 38%. LPS altered the intracellular metabolism of TH and reduced the initial myogenic stimulus. However, it did not affect late differentiation. Increased intracellular TH activation may be the compensatory pathway involved in the recovery of myogenic differentiation under a low-grade inflammatory milieu.

2.
Front Physiol ; 12: 704044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557108

RESUMEN

BACKGROUND: The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction. METHODS: Male C57Bl/6 mice were divided into two groups, namely, cecal ligation and puncture (CLP, n = 26) and sham-operated (n = 19). Mice received antibiotic treatment 8 h after surgery and then every 24 h until 5 days after surgery when mice were euthanized and the diaphragms were collected. Also, diaphragm function was evaluated in vivo by ultrasound 120 h after CLP. The tissue fiber profile was evaluated by the expression of myosin heavy chain and SERCA gene by qPCR and myosin protein by using Western blot. The Myod1 and Myog expressions were evaluated by using qPCR. Diaphragm ultrastructure was assessed by electron microscopy, and mitochondrial physiology was investigated by high-resolution respirometry, Western blot, and qPCR. RESULTS: Cecal ligation and puncture mice developed moderated sepsis, with a 74% survivor rate at 120 h. The diaphragm mass did not change in CLP mice compared with control, but we observed sarcomeric disorganization and increased muscle thickness (38%) during inspiration and expiration (21%). Septic diaphragm showed a reduction in fiber myosin type I and IIb mRNA expression by 50% but an increase in MyHC I and IIb protein levels compared with the sham mice. Total and healthy mitochondria were reduced by 30% in septic mice, which may be associated with a 50% decrease in Ppargc1a (encoding PGC1a) and Opa1 (mitochondria fusion marker) expressions in the septic diaphragm. The small and non-functional OPA1 isoform also increased 70% in the septic diaphragm. These data suggest an imbalance in mitochondrial function. In fact, we observed downregulation of all respiratory chain complexes mRNA expression, decreased complex III and IV protein levels, and reduced oxygen consumption associated with ADP phosphorylation (36%) in CLP mice. Additionally, the septic diaphragm increased proton leak and downregulated Sod2 by 70%. CONCLUSION: The current model of sepsis induced diaphragm morphological changes, increased mitochondrial damage, and induced functional impairment. Thus, diaphragm damage during sepsis seems to be associated with mitochondrial dysfunction.

3.
Thyroid ; 30(7): 1079-1090, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32200709

RESUMEN

Background: Sepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice. Methods: Male C57Bl/6 mice were divided into two groups: cecal ligation and puncture (CLP) and sham. Twenty-four hours after surgery, plasma, diaphragms, and livers were collected. TH metabolism and responses were analyzed by measuring messenger RNA (mRNA) expression of Dio1 in the liver, and Thra, Thrb, Dio2, Slc16a10, and Slc16a2 (encodes MCT 10 and 8), in the diaphragm. T4 plasma levels were measured by radioimmunoassay. Damage to diaphragm mitochondria was assessed by electron microscopy and real-time polymerase chain reaction (qPCR), and function with oxygraphy. The diaphragm antioxidative defense system was examined by qPCR, analyzing superoxide dismutase (SOD) 1 (Sod1), mitochondrial superoxide dismutase (SOD 2; Sod2), extracellular superoxide dismutase (SOD 3; Sod3), glutathione peroxidase 1 (Gpx1), and catalase (Cat) expression. The effect of TH replacement was tested by treating the mice with T4 and triiodothyronine (T3) (CLP+TH) after surgery. Results: CLP mice presented reduced total plasma T4 concentrations, downregulated Dio1, and upregulated Il1b mRNA expression in the liver. CLP mice also displayed downregulated Thra, Thrb, Slc16a10, and Slc16a2 expression in the diaphragm, suggesting that TH signaling was compromised. The expression of Ppargc1a (encoding PGC1a) was downregulated, which correlated with the decrease in the number of total mitochondria, increase in the percentage of injured mitochondria, downregulation of respiratory chain complex 2 and 3 mRNA expression, and reduced maximal respiration. In addition, septic animals presented a three-fold increase in Ucp3 and G6pdh expression; downregulated Sod3, Gpx1, and Cat expression; and upregulated Sod2 expression, potentially due to elevated reactive oxygen species levels. The mitochondrial number and the percentage of injured mitochondrial were similar between sham and CLP+TH mice. Conclusions: Sepsis induced responses consistent with NTIS, resulted in mitochondrial damage and functional impairment, and modulated the expression of key antioxidant enzymes in the diaphragm. Thus, impaired diaphragm function during sepsis seems to involve altered local TH signaling, mitochondrial dysfunction, and oxidative stress defense.


Asunto(s)
Diafragma/metabolismo , Mitocondrias/metabolismo , Sepsis/metabolismo , Transducción de Señal/fisiología , Hormonas Tiroideas/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Hígado/metabolismo , Ratones , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA