Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301223

RESUMEN

In 2021, grapevines (Vitis vinifera L.) cv. Callet growing in a commercial vineyard located at Pollença (northeast of the island of Majorca, Spain) showed severe symptoms of shoot blight during spring and early summer, with an incidence of 70%. Symptoms consisted of elongated cankered-like lesions, surrounded by water-soaked darker tissues, that developed at the base or around the middle nodes of the shoot. For fungal isolation, shoot samples with lesions were collected, surface disinfected with 2% NaCl for 90s, rinsed twice with deionized water and placed in Petri plates containing potato dextrose agar (PDA). The plates were incubated at 25°C under 12 h light-darkness for 6 days. Isolations consistently yielded on kind of fungal colonies that produced white mycelium and black spherical to elongated sclerotia (2 to 10 mm in diameter). Morphological characterization was consistent with the description of Sclerotinia sclerotiorum (Lib.) de Bary (Bolton et al. 2006). Three isolates (UIB 118-1, UIB 118-26, and UIB 129-41) were preserved and deposited in the Culture Collection of Microbiology-Faculty of Sciences, University of Balearic Islands, Spain. Genomic DNA was extracted from isolates UIB 118-26 and UIB 129-41 using the EZNA Miniprep Kit (Omega Bio-Tek, Norcross, GA). The internal transcribed spacer (ITS) region of ribosomal DNA, ß-tubulin (BTUB) and calmodulin (CAL) gene regions were amplified using ITS1F-ITS4 (Gardes and Bruns, 1996; White et al. 1990), Bt-2a/Bt-2b (Glass and Donaldson 1995) and CAL228F/CAL737R (Carbone and Kohn 1999) primer sets, respectively. Amplicons were sequenced and deposited in GenBank with accession numbers MZ604647 and MZ604648 for ITS, OK634402 and OK634403 for BTUB and OK634404 and OK634405 for CAL. BLASTn search showed that isolates were >99 % (ITS, BTUB and CAL) identical to S. sclerotiorum GenBank accession no. KF859933, CP017815 and KF871381, respectively. Pathogenicity tests were conducted using eight one-year old grapevines cv. Cabernet Sauvignon. Old and new green shoots were inoculated by inserting a 6-mm plug of mycelium taken from actively growing cultures on PDA into cuts made at the base and at the distal part of each shoot with a sterile scalpel with a total of eight inoculation points per plant. Inoculated wounds were sealed with Parafilm tape to avoid rapid dehydration. Inoculated plants and an equal number of wounded but non-inoculated plants (negative controls) were maintained at 25 ± 1°C for 48 h in plastic containers to ensure a high relative humidity (>90%). After 5 days, the infection girdled and rotted the green new shoots, whereas the older partially lignified shoots developed a localized long brown lesion that reached 16 cm in length. Due to the rotting of the basal part of the petiole, leaves turned gray, wilted, and died, easily detaching from the stem. In advanced stages of the disease, 7 days after infection, branches died and fell with the leaves remained attached (Fig 1 A, B). Reisolations from diseased shoots were successfully performed on PDA to fulfill Koch's postulates. S. slerotiorum was previously reported on grapevine causing shoot blight in Chile (Latorre and Guerrero, 2001), Korea (Jong-Han et al. 2009), California-USA (Boland and Hall, 1994) and Australia (Hall et al. 2002). AlsoS. sclerotiorum was reported among the endophytic mycobiota associated with Vitis vinifera in the Iberian Peninsula (Gonzalez and Tello, 2011) but not as a pathogen causing visible symptoms on that crop. So, this is the first report of the occurrence of S. slerotiorum as a pathogen of grapevines in Spain causing symptoms of canker and shoot blight. This finding highlights a potential risk of this fungal disease for the wine industry in the Mediterranean region and specially for Spain, the country with the largest acreage devoted to grapevines. Although chemical and biological are suitable control strategies, disease management is difficult as sclerotia of Sclerotinia can remain in the soil for up to eight years (Adams and Ayears, 1979), and preventive surveys are greatly recommended as an important epidemiological tool to monitor the epidemiology of disease and identify potential outbreaks of this new pathogen on grapevine in Spain.

2.
Plant Dis ; 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779259

RESUMEN

Nectarine (Prunus persica (L.) Batsch var. nucipersica (Suckow) C. K. Schneid.) is a fruit crop widely cultivated throughout the Mediterranean basin. In Spain, it is mainly grown in eastern regions of the country. In March 2018, 5-year-old nectarine trees showing twig canker symptoms were observed after a rainy spring period in a 0.5 ha orchard located at Alaior, Menorca island (Spain). Cankers were frequent on affected trees (approximately, 80% of the total trees), thus leading to shoot blight. Ten twig segments of one-year old wood with cankers were cut, washed under running tap water, surface disinfected for 1 min in a 1.5% sodium hypochlorite solution and rinsed twice in sterile distilled water. Small pieces (2 mm) of affected tissues were taken from the margin of the cankers and plated on potato dextrose agar (PDA) supplemented with 0.5 g/L of streptomycin sulphate (PDAS). The plates were then incubated at 25 ºC in the dark for 7 to 10 d. Actively growing colonies were first hyphal-tipped and then transferred to PDA and 2% water agar supplemented with sterile pine needles and incubated at 21-22ºC under a 12h/12h near UV / darkness cycle during 21 d (León et al. 2020). Colonies were white at first, becoming light cream, with visible solitary and aggregate pycnidia at maturity. Alpha conidia were aseptate, fusiform, hyaline, multi-guttulated (mean ± SD = 7.4 ± 0.7 × 2.8 ± 0.4 µm, n = 100). Beta and gamma conidia were not observed. The morphological and cultural characteristics of the isolates were congruent with those of Diaporthe spp. (Gomes et al. 2013). The ITS1-5.8S-ITS2 (ITS) region and fragments of ß-tubulin (tub2), the translation elongation factor 1-alpha (tef1-α) gene regions, histone H3 (his3) and calmodulin (cal) genes of representative isolate DAL-59 were amplified and sequenced (Santos et al. 2017). The BLASTn analysis revealed 100% similarity with sequences of D. mediterranea (Synonym D. amygdali) (Hilário et al. 2021) isolate DAL-34 from almond (ITS: MT007489, tub2: MT006686, tef1-α: MT006989, his3: MT007095 and cal: MT006761). Sequences of isolate DAL-59 were deposited in GenBank Database (ITS: MT007491, tub2: MT006688, tef1-α: MT006991, his3: MT007097 and cal: MT006763). Pathogenicity tests were conducted using one-year-old potted plants of nectarine cv. Boreal, which were inoculated with isolate DAL-59. In each plant, a 3 mm wound was made in the center of the main branch (about 30 cm length) with a scalpel. Colonized agar plugs with 3 mm diameter, which were obtained from active 10-day-old colonies growing on PDA, were inserted underneath the epidermis and the wounds sealed with Parafilm. Inoculated plants were incubated in a growth chamber at 23 ºC with 12 h of light per day. Controls were inoculated with uncolonized PDA plugs. There were twelve plants per treatment, which were arranged in a completely randomized design. Five days after inoculation necrosis development was observed in the area of inoculation. Wilting and twig blight symptoms over the lesion occurred 3-wk after inoculation and pycnidia were detected, while the controls remained asymptomatic. Diaporthe amygdali was re-isolated from symptomatic tissues and identified as described above to satisfy Koch's postulates. To our knowledge, this is the first report of D. amygdali causing twig canker and shoot blight disease on nectarine in Spain.

3.
Phytopathology ; 109(2): 222-224, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30570447

RESUMEN

Xylella fastidiosa is a plant-pathogenic bacterium that causes serious diseases in many crops of economic importance and is a quarantine organism in the European Union. This study reports a de novo-assembled draft genome sequence of the first isolates causing Pierce's disease in Europe: X. fastidiosa subsp. fastidiosa strains XYL1732/17 and XYL2055/17. Both strains were isolated from grapevines (Vitis vinifera) showing Pierce's disease symptoms at two different locations in Mallorca, Spain. The XYL1732/17 genome is 2,444,109 bp long, with a G+C content of 51.5%; it contains 2,359 open reading frames and 48 tRNA genes. The XYL2055/17 genome is 2,456,780 bp long, with a G+C content of 51.5%; it contains 2,384 open reading frames and 48 tRNA genes.


Asunto(s)
Enfermedades de las Plantas/microbiología , Vitis , Xylella , Europa (Continente) , Granjas , España , Vitis/microbiología , Xylella/genética , Xylella/aislamiento & purificación
4.
Plant Dis ; 100(12): 2483-2491, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30686161

RESUMEN

In this study, 31 almond orchards with trees showing severe decline symptoms were surveyed from 2009 to 2014 on the island of Mallorca (Spain). In all, 45 Botryosphaeriaceae isolates were collected and characterized based on phenotypical features and comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region and elongation factor 1-α gene. Five species were identified as Diplodia olivarum, D. seriata, Neofusicoccum luteum, N. mediterraneum, and N. parvum. Pathogenicity tests were performed on four cultivars ('Pons', 'Vivot', 'Jordi', and 'Ferragnes') under field conditions for two consecutive years (2013 to 2014), and confirmed that all five species cause canker and dieback of almond, with Neofusicoccum spp. more virulent than Diplodia spp. in both years. Jordi was less sensitive to fungal infection in 2013. First reports from almond in Spain include N. mediterraneum and N. luteum.

5.
Microorganisms ; 10(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36557646

RESUMEN

The emergence of Xylella fastidiosa (Xf) in the Balearic Islands in October 2016 was a major phytosanitary challenge with international implications. Immediately after its detection, eradication and containment measures included in Decision 2015/789 were implemented. Surveys intensified during 2017, which soon revealed that the pathogen was widely distributed on the islands and eradication measures were no longer feasible. In this review, we analyzed the control measures carried out by the Balearic Government in compliance with European legislation, as well as the implementation of its control action plan. At the same time, we contrasted them with the results of scientific research accumulated since 2017 on the epidemiological situation. The case of Xf in the Balearic Islands is paradigmatic since it concentrates on a small territory with one of the widest genetic diversities of Xf affecting crops and forest ecosystems. We also outline the difficulties of anticipating unexpected epidemiological situations in the legislation on harmful exotic organisms on which little biological information is available. Because Xf has become naturalized in the islands, coexistence alternatives based on scientific knowledge are proposed to reorient control strategies towards the main goal of minimizing damage to crops and the landscape.

6.
Commun Biol ; 3(1): 560, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037293

RESUMEN

The recent introductions of the bacterium Xylella fastidiosa (Xf) into Europe are linked to the international plant trade. However, both how and when these entries occurred remains poorly understood. Here, we show how almond scorch leaf disease, which affects ~79% of almond trees in Majorca (Spain) and was previously attributed to fungal pathogens, was in fact triggered by the introduction of Xf around 1993 and subsequently spread to grapevines (Pierce's disease). We reconstructed the progression of almond leaf scorch disease by using broad phylogenetic evidence supported by epidemiological data. Bayesian phylogenetic inference predicted that both Xf subspecies found in Majorca, fastidiosa ST1 (95% highest posterior density, HPD: 1990-1997) and multiplex ST81 (95% HPD: 1991-1998), shared their most recent common ancestors with Californian Xf populations associated with almonds and grapevines. Consistent with this chronology, Xf-DNA infections were identified in tree rings dating to 1998. Our findings uncover a previously unknown scenario in Europe and reveal how Pierce's disease reached the continent.


Asunto(s)
Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Prunus dulcis/microbiología , Xylella/genética , Filogenia , España , Madera/microbiología , Xylella/patogenicidad
7.
Artículo en Inglés | MEDLINE | ID: mdl-30533706

RESUMEN

We report the complete annotated genome sequence of the plant-pathogenic bacterium Xylella fastidiosa subsp. fastidiosa strain IVIA5235. This strain was recovered from a cherry tree in Mallorca, Spain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA