Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-27534415

RESUMEN

Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.


Asunto(s)
Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , ARN Interferente Pequeño/uso terapéutico , Humanos , Cirrosis Hepática/terapia , Nanopartículas/administración & dosificación , Polímeros/administración & dosificación , Interferencia de ARN
2.
J Pharm Pharm Sci ; 21(1): 119-134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29578859

RESUMEN

PURPOSE: To develop and characterize vitamin A (VA)-coupled liposomes for the targeted delivery of BMP4-siRNA to hepatic stellate cells (HSC). VA was selected to increase the uptake by HSC based on their function in the storage of VA. METHODS: DOTAP/DOPE liposomes were prepared by film hydration method and their surfaces were decorated with VA. The cytotoxicity of VA-conjugated liposomes was evaluated by the WST-1 assay. Inhibition of BMP4 and α-SMA was determined by PCR and ELISA. RESULTS: VA-coated lipoplexes exhibited an average particle sizes less than 200 nm and zeta potential around +25 mV both determined using ZetaPALS. Inclusion of VA to liposomal surfaces significantly enhanced their cellular uptake without affecting cytotoxicity. VA-coupled liposomes carrying BMP4-siRNA resulted in a significant reduction in BMP4 and α-SMA at both mRNA and protein levels.  Conclusion: VA-coated liposomes were successfully designed to deliver BMP4-siRNA to specifically target HSC. The novel delivery system discussed herein may serve as a potential therapeutic strategy for the treatment of liver fibrosis in the future. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Actinas/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Células Estrelladas Hepáticas/efectos de los fármacos , Nanopartículas/química , Vitamina A/farmacología , Actinas/biosíntesis , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Células Estrelladas Hepáticas/metabolismo , Humanos , Lípidos/química , Liposomas/química , ARN Interferente Pequeño/química
3.
Pharmaceutics ; 11(9)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533285

RESUMEN

The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of magnitude and duration of BBB disruption exist. In the present study, the preliminary safety and efficacy profile of HAV6, a peptide that binds to the external domains of cadherin, to transiently open the BBB and improve the delivery of a therapeutic agent, was evaluated in a murine brain tumor model. Transient opening of the BBB in response to HAV6 peptide administration was quantitatively characterized using both a gadolinium magnetic resonance imaging (MRI) contrast agent and adenanthin (Ade), the intended therapeutic agent. The effects of HAV6 peptide on BBB integrity and the efficacy of concurrent administration of HAV6 peptide and the small molecule inhibitor, Ade, in the growth and progression of an orthotopic medulloblastoma mouse model using human D425 tumor cells was examined. Systemic administration of HAV6 peptide caused transient, reversible disruption of BBB in mice. Increases in BBB permeability produced by HAV6 were rapid in onset and observed in all regions of the brain examined. Concurrent administration of HAV6 peptide with Ade, a BBB impermeable inhibitor of Peroxiredoxin-1, caused reduced tumor growth and increased survival in mice bearing medulloblastoma. The rapid onset and transient nature of the BBB modulation produced with the HAV6 peptide along with its uniform disruption and biocompatibility is well-suited for CNS drug delivery applications, especially in the treatment of brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA