Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 49(14): 8145-8160, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34244791

RESUMEN

The yeast cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous serine-threonine kinase, encompassing three catalytic (Tpk1-3) and one regulatory (Bcy1) subunits. Evidence suggests PKA involvement in DNA damage checkpoint response, but how DNA repair pathways are regulated by PKA subunits remains inconclusive. Here, we report that deleting the tpk1 catalytic subunit reduces non-homologous end joining (NHEJ) efficiency, whereas tpk2-3 and bcy1 deletion does not. Epistatic analyses revealed that tpk1, as well as the DNA damage checkpoint kinase (dun1) and NHEJ factor (nej1), co-function in the same pathway, and parallel to the NHEJ factor yku80. Chromatin immunoprecipitation and resection data suggest that tpk1 deletion influences repair protein recruitments and DNA resection. Further, we show that Tpk1 phosphorylation of Nej1 at S298 (a Dun1 phosphosite) is indispensable for NHEJ repair and nuclear targeting of Nej1 and its binding partner Lif1. In mammalian cells, loss of PRKACB (human homolog of Tpk1) also reduced NHEJ efficiency, and similarly, PRKACB was found to phosphorylate XLF (a Nej1 human homolog) at S263, a corresponding residue of the yeast Nej1 S298. Together, our results uncover a new and conserved mechanism for Tpk1 and PRKACB in phosphorylating Nej1 (or XLF), which is critically required for NHEJ repair.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Humanos , Fosforilación/genética , Saccharomyces cerevisiae/genética
2.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785068

RESUMEN

For decades, lithium chloride (LiCl) has been used as a treatment option for those living with bipolar disorder (BD). As a result, many studies have been conducted to examine its mode of action, toxicity, and downstream cellular responses. We know that LiCl is able to affect cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3, which are considered to be important in regulating gene expression at the translational level. However, additional downstream effects require further investigation, especially in translation pathway. In yeast, LiCl treatment affects the expression, and thus the activity, of PGM2, a phosphoglucomutase involved in sugar metabolism. Inhibition of PGM2 leads to the accumulation of intermediate metabolites of galactose metabolism causing cell toxicity. However, it is not fully understood how LiCl affects gene expression in this matter. In this study, we identified three genes, NAM7, PUS2, and RPL27B, which increase yeast LiCl sensitivity when deleted. We further demonstrate that NAM7, PUS2, and RPL27B influence translation and exert their activity through the 5'-Untranslated region (5'-UTR) of PGM2 mRNA in yeast.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Antimaníacos/farmacología , Cloruro de Litio/farmacología , Biosíntesis de Proteínas/genética , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Regiones no Traducidas 5' , Aminoacil-ARNt Sintetasas/genética , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Cloruro de Litio/uso terapéutico , Organismos Modificados Genéticamente , Fosfoglucomutasa/antagonistas & inhibidores , Fosfoglucomutasa/metabolismo , ARN Helicasas/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética
3.
BMC Bioinformatics ; 15: 383, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25492630

RESUMEN

BACKGROUND: Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. RESULTS: On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. CONCLUSIONS: The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Proteoma/análisis , Programas Informáticos , Humanos
4.
PLoS One ; 15(7): e0235033, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32639961

RESUMEN

Lithium Chloride (LiCl) toxicity, mode of action and cellular responses have been the subject of active investigations over the past decades. In yeast, LiCl treatment is reported to reduce the activity and alters the expression of PGM2, a gene that encodes a phosphoglucomutase involved in sugar metabolism. Reduced activity of phosphoglucomutase in the presence of galactose causes an accumulation of intermediate metabolites of galactose metabolism leading to a number of phenotypes including growth defect. In the current study, we identify two understudied yeast genes, YTA6 and YPR096C that when deleted, cell sensitivity to LiCl is increased when galactose is used as a carbon source. The 5'-UTR of PGM2 mRNA is structured. Using this region, we show that YTA6 and YPR096C influence the translation of PGM2 mRNA.


Asunto(s)
Adenosina Trifosfatasas/genética , Antimaníacos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cloruro de Litio/farmacología , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoglucomutasa/genética , Biosíntesis de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Front Microbiol ; 11: 602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362880

RESUMEN

The rapid detection of foodborne microbial pathogens contaminating fresh fruits and vegetables during the intervening period between harvest and consumption could revolutionize microbial quality assurance of food usually consumed raw and those with a limited shelf life. We have developed a sensitive, shotgun whole genome sequencing protocol capable of detecting as few as 1 colony forming unit (cfu) of Salmonella enterica serovar Typhimurium spiked on 25 g of lettuce. The Ion Torrent sequencing platform was used to generate reads of globally amplified DNA from microbes recovered from the surface of lettuce followed by bioinformatic analyses of the nucleotide sequences to detect the presence of Salmonella. The test is rapid and sensitive, and appropriate for testing perishable foods, and those consumed raw, for Salmonella contamination. The test has the potential to be universally applicable to any microbial contaminant on lettuce as long as a suitable bioinformatics pipeline is available and validated. A universal test is expected to pave the way for preventive and precision food safety and the re-shaping of the entire spectrum of food safety investigations from the current disease-limiting, reactive procedure to a proactive, disease prevention process.

6.
PLoS One ; 13(3): e0193111, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29554091

RESUMEN

Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.


Asunto(s)
Antifúngicos/farmacología , Citotoxinas/farmacología , Nanopartículas del Metal , Saccharomyces cerevisiae , Plata/farmacología , Óxido de Zinc/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
7.
Gene ; 639: 128-136, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28987344

RESUMEN

Non-Homologous End Joining (NHEJ) is a highly conserved pathway that repairs Double-Strand Breaks (DSBs) within DNA. Here we show that the deletion of yeast uncharacterized ORF HUR1, Hydroxyurea Resistance1 affects the efficiency of NHEJ. Our findings are supported by Protein-Protein Interaction (PPI), genetic interaction and drug sensitivity analyses. To assess the activity of HUR1 in DSB repair, we deleted its non-overlapping region with PMR1, referred to as HUR1-A. We observed that similar to deletion of TPK1 and NEJ1, and unlike YKU70 (important for NHEJ of DNA with overhang and not blunt end), deletion of HUR1-A reduced the efficiency of NHEJ in both overhang and blunt end plasmid repair assays. Similarly, a chromosomal repair assay showed a reduction for repair efficiency when HUR1-A was deleted. In agreement with a functional connection for Hur1p with Tpk1p and NEJ1p, double mutant strains Δhur1-A/Δtpk1, and Δhur1-A/Δnej1 showed the same reduction in the efficiency of plasmid repair, compared to both single deletion strains. Also, using a Homologous Recombination (HR) specific plasmid-based DSB repair assay we observed that deletion of HUR1-A influenced the efficiency of HR repair, suggesting that HUR1 might also play additional roles in other DNA repair pathways.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Sistemas de Lectura Abierta , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Genes Fúngicos
8.
PLoS One ; 13(9): e0198704, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30231023

RESUMEN

Heavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker's yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.


Asunto(s)
Eliminación de Gen , Glutatión Peroxidasa/genética , Metales Pesados/metabolismo , Priones/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Enzimas Ubiquitina-Conjugadoras/genética , Regulación Fúngica de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Inactivación Metabólica , Priones/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
9.
J Food Prot ; 80(2): 295-301, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221989

RESUMEN

A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Salmonella enteritidis/aislamiento & purificación , Mataderos , Animales , Canadá , Pollos/microbiología , Reacción en Cadena de la Polimerasa , Salmonella/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Serogrupo
10.
PeerJ ; 5: e4037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158977

RESUMEN

The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked to acetic acid and heat shock stress responses in yeast. Both acetic acid and heat shock have been identified to trigger different cellular responses including reduction of global protein synthesis and induction of programmed cell death. Yeast HSC82 and HSP82 code for two important heat shock proteins that together account for 1-2% of total cellular proteins. Both proteins have been linked to responses to acetic acid and heat shock. In contrast to the overall rate of protein synthesis which is reduced, the expression of HSC82 and HSP82 is induced in response to acetic acid stress. In the current study we identified two yeast genes DOM34 and RPL36A that are linked to acetic acid and heat shock sensitivity. We investigated the influence of these genes on the expression of HSP proteins. Our observations suggest that Dom34 and RPL36A influence translation in a CAP-independent manner.

11.
Comput Biol Chem ; 71: 180-187, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29112936

RESUMEN

The production of anti-Zika virus (ZIKV) therapeutics has become increasingly important as the propagation of the devastating virus continues largely unchecked. Notably, a causal relationship between ZIKV infection and neurodevelopmental abnormalities has been widely reported, yet a specific mechanism underlying impaired neurological development has not been identified. Here, we report on the design of several synthetic competitive inhibitory peptides against key pathogenic ZIKV proteins through the prediction of protein-protein interactions (PPIs). Often, PPIs between host and viral proteins are crucial for infection and pathogenesis, making them attractive targets for therapeutics. Using two complementary sequence-based PPI prediction tools, we first produced a comprehensive map of predicted human-ZIKV PPIs (involving 209 human protein candidates). We then designed several peptides intended to disrupt the corresponding host-pathogen interactions thereby acting as anti-ZIKV therapeutics. The data generated in this study constitute a foundational resource to aid in the multi-disciplinary effort to combat ZIKV infection, including the design of additional synthetic proteins.


Asunto(s)
Diseño de Fármacos , Péptidos/farmacología , Proteínas Virales/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química , Unión Proteica/efectos de los fármacos
12.
Mol Cell Biol ; 35(14): 2448-63, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963654

RESUMEN

The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Fluorescente , Mitosis/genética , Mutación , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1 de Unión al Supresor Tumoral P53
13.
PLoS One ; 9(1): e87248, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498054

RESUMEN

One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Roturas del ADN de Doble Cadena , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Biosyst ; 10(4): 916-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24535059

RESUMEN

Protein biosynthesis is an orderly process that requires a balance between rate and accuracy. To produce a functional product, the fidelity of this process has to be maintained from start to finish. In order to systematically identify genes that affect stop codon bypass, three expression plasmids, pUKC817, pUKC818 and pUKC819, were integrated into the yeast non-essential loss-of-function gene array (5000 strains). These plasmids contain three different premature stop codons (UAA, UGA and UAG, respectively) within the LacZ expression cassette. A fourth plasmid, pUKC815 that carries the native LacZ gene was used as a control. Transformed strains were subjected to large-scale ß-galactosidase lift assay analysis to evaluate production of ß-galactosidase for each gene deletion strain. In this way 84 potential candidate genes that affect stop codon bypass were identified. Three candidate genes, OLA1, BSC2, and YNL040W, were further investigated, and were found to be important for cytoplasmic protein biosynthesis.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , beta-Galactosidasa/genética , Adenosina Trifosfatasas/biosíntesis , Codón sin Sentido/genética , Eliminación de Gen , Operón Lac/genética , Plásmidos/genética , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Miembro 2 de la Familia de Transportadores de Soluto 12/biosíntesis , beta-Galactosidasa/biosíntesis
15.
Mol Biosyst ; 9(6): 1351-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23467670

RESUMEN

A genome-wide screen of a yeast non-essential gene-deletion library was used to identify sick phenotypes due to oxygen deprivation. The screen provided a manageable list of 384 potentially novel as well as known oxygen responding (anoxia-survival) genes. The gene-deletion mutants were further assayed for sensitivity to ferrozine and cobalt to obtain a subset of 34 oxygen-responsive candidate genes including the known hypoxic gene activator, MGA2. With each mutant in this subset a plasmid based ß-galactosidase assay was performed using the anoxic-inducible promoter from OLE1 gene, and 17 gene deletions were identified that inhibit induction under anaerobic conditions. Genetic interaction analysis for one of these mutants, the RNase-encoding POP2 gene, revealed synthetic sick interactions with a number of genes involved in oxygen sensing and response. Knockdown experiments for CNOT8, human homolog of POP2, reduced cell survival under low oxygen condition suggesting a similar function in human cells.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hipoxia de la Célula , Línea Celular , Supervivencia Celular/genética , Cobalto/farmacología , Ácido Graso Desaturasas/genética , Ferrozina/farmacología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Quelantes del Hierro/metabolismo , Proteínas de la Membrana/genética , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Estearoil-CoA Desaturasa , Oligoelementos/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , beta-Galactosidasa/genética
16.
Expert Opin Drug Discov ; 6(9): 921-35, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22646215

RESUMEN

INTRODUCTION: Proteins within the cell act as part of complex networks, which allow pathways and processes to function. Therefore, understanding how proteins interact is a significant area of current research. AREAS COVERED: This review aims to present an overview of key experimental techniques (yeast two-hybrid, tandem affinity purification and protein microarrays) used to discover protein-protein interactions (PPIs), as well as to briefly discuss certain computational methods for predicting protein interactions based on gene localization, phylogenetic information, 3D structural modeling or primary protein sequence data. Due to the large-scale applicability of primary sequence-based methods, the authors have chosen to focus on this strategy for our review. There is an emphasis on a recent algorithm called Protein Interaction Prediction Engine (PIPE) that can predict global PPIs. The readers will discover recent advances both in the practical determination of protein interaction and the strategies that are available to attempt to anticipate interactions without the time and costs of experimental work. EXPERT OPINION: Global PPI maps can help understand the biology of complex diseases and facilitate the identification of novel drug target sites. This study describes different techniques used for PPI prediction that we believe will significantly impact the development of the field in a new future. We expect to see a growing number of similar techniques capable of large-scale PPI predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA