Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 54(4): 5427-5443, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34327745

RESUMEN

White matter hyperintensities (WMH) are common findings that can be found in physiological ageing. Several studies suggest that the disruption of white matter tracts included in WMH could induce abnormal functioning of the respective linked cortical structures, with consequent repercussion on the cerebral functions, included the cognitive sphere. In this cross-sectional research, we analysed the effects of the total WMH burden (tWMHb) on resting-state functional magnetic resonance imaging (rs-fMRI) and cognition. Functional and structural MR data, as well as the scores of the trail making test subtests A (TMT-A) and B (TMT-B) of 75 healthy patients, were extracted from the public available Leipzig Study for Mind-Body-Emotion Interactions dataset. tWMHb was extracted from structural data. Spearman's correlation analyses were made for investigating correlations between WMHb and the scores of the cognitive tests. The fractional amplitude of low-frequency fluctuations (fALFF) method was applied for analysing the rs-fMRI data, adopting a multiple regression model for studying the effects of tWMHb on brain activity. Three different subanalyses were conducted using different statistical methods. We observed statistically significant correlations between WMHb and the scores of the cognitive tests. The fALFF analysis revealed that tWMHb is associated with the reduction of regional neural activity of several brain areas (in particular the prefrontal cortex, precuneus and cerebellar crus I/II). We conclude that our findings clarify better the relationships between WMH and cognitive impairment, evidencing that tWMHb is associated with impairments of the neurocognitive function in healthy subjects by inducing a diffuse reduction of the neural activity.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Estudios Transversales , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen
2.
Brain Connect ; 10(8): 436-447, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32842755

RESUMEN

Purpose: To investigate the relationships between white matter hyperintensities (WMH) and hippocampal volume and their influence on brain networks by using resting-state functional connectivity (rs-fc) magnetic resonance (MR) according to their localization. Methods: In this exploratory cross-sectional study, 38 subjects from the public "Leipzig Study for Mind/Body/Emotion Interactions" (LEMON) data set were selected. Morphometric analyses of both WMH burden and the total hippocampal relative volume (tHRV) were performed for each subject with two automated software. The WMH were then categorized as total (tWMH), periventricular (pvWMH), deep (dWMH), and juxtacortical (jcWMH). Spearman's correlation analyses were performed to evaluate the relationships between the following variables: age, tWMH, pvWMH, dWMH, jcWMH, and tHRV. Subsequently, three different rs-fc MR group analyses were performed using a multiple regression model that included age, pvWMH, dWMH, and jcWMH as second-level covariates. The graph theoretical analysis was applied to evaluate the effects of pvWMH (analysis 1), jcWMH (analysis 2), and dWMH (analysis 3). Results: Spearman's correlation analysis revealed several statistically significant (p < 0.05) positive and negative correlations, in particular positive between age and tWMH, and negative between dWMH and tHRV. rs-fc MR analysis 1 and 2 did not reveal statistically significant results; analysis 3 revealed that dWMH influenced network properties of several cerebral regions, in particular global and local efficiency of both the hippocampi. Conclusion: The localization of WMH influences brain activity in healthy subjects. In particular, dWMH are inversely correlated with tHRV and influence several properties of different cerebral areas, included both the hippocampi. Impact statement In this exploratory research we evidenced how both the load and the localization of white matter hyperintensities influence brain activity; in particular, we evidenced an inverse correlation between the volume of the deep white matter hyperintensities and hippocampal volume, as well as a direct influence on the connectivity properties of this important cerebral region. This finding represent a new element for understanding the effects of white matter hyperintensities on brain networking, and a cue that could be taken into account for possible future studies investigating brain connectivity and cognitive functions in healthy and pathological conditions.


Asunto(s)
Hipocampo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Envejecimiento , Mapeo Encefálico , Estudios Transversales , Femenino , Voluntarios Sanos , Hipocampo/crecimiento & desarrollo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/crecimiento & desarrollo , Sustancia Blanca/crecimiento & desarrollo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA