Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(14): 147001, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702214

RESUMEN

We report muon spin rotation and magnetization measurements under pressure on Fe_{1+δ}Se_{1-x}S_{x} with x≈0.11. Above p≈0.6 GPa we find a microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting T_{c}(p). The maximum of T_{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of T_{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x≥0.2.

2.
Phys Rev Lett ; 120(23): 237202, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932706

RESUMEN

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate ß-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of ß-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.

3.
Phys Rev Lett ; 118(23): 237203, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644650

RESUMEN

In the vanadium oxyfluoride compound (NH_{4})_{2}[C_{7}H_{14}N][V_{7}O_{6}F_{18}] (DQVOF), the V^{4+} (3d^{1}, S=1/2) ions realize a unique, highly frustrated breathing kagome lattice composed of alternately sized, corner-sharing equilateral triangles. Here we present an ^{17}O NMR study of DQVOF, which isolates the local susceptibility of the breathing kagome network. By a fit to series expansion, we extract the ratio of the interactions within the breathing kagome plane, J_{∇}/J_{Δ}=0.55(4), and the mean antiferromagnetic interaction J[over ¯]=60(7) K. Spin lattice (T_{1}) measurements reveal an essentially gapless excitation spectrum with a maximum gap Δ/J[over ¯]=0.007(7). Our study provides new impetus for further theoretical investigations in order to establish whether the gapless spin liquid behavior displayed by DQVOF is intrinsic to its breathing kagome lattice or whether it is due to perturbations to this model, such as a residual coupling of the V^{4+} ions in the breathing kagome planes to the interlayer V^{3+} (S=1) spins.

4.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991199

RESUMEN

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

5.
Phys Rev Lett ; 115(4): 047201, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26252706

RESUMEN

Na_{4}Ir_{3}O_{8} is a unique case of a hyperkagome 3D corner sharing triangular lattice that can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate. We present a comprehensive set of NMR data taken on both the ^{23}Na and ^{17}O sites. We show that disordered magnetic freezing of all Ir sites sets in below T_{f}~7 K, well below J=300 K, with a drastic slowing down of fluctuations to a static state revealed by our T_{1} measurements. Above typically 2T_{f}, physical properties are relevant to the spin liquid state induced by this exotic geometry. While the shift data show that the susceptibility levels off below 80 K, 1/T_{1} has little variation from 300 K to 2T_{f}. We discuss the implication of our results in the context of published experimental and theoretical work.

6.
Phys Rev Lett ; 110(20): 207208, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167449

RESUMEN

The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.

7.
Sci Rep ; 11(1): 14373, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257347

RESUMEN

The electronic ground state of iron-based materials is unusually sensitive to electronic correlations. Among others, its delicate balance is profoundly affected by the insertion of magnetic impurities in the FeAs layers. Here, we address the effects of Fe-to-Mn substitution in the non-superconducting Sm-1111 pnictide parent compound via a comparative study of SmFe[Formula: see text]Mn[Formula: see text]AsO samples with [Formula: see text] 0.05 and 0.10. Magnetization, Hall effect, and muon-spin spectroscopy data provide a coherent picture, indicating a weakening of the commensurate Fe spin-density-wave (SDW) order, as shown by the lowering of the SDW transition temperature [Formula: see text] with increasing Mn content, and the unexpected appearance of another magnetic order, occurring at [Formula: see text] and 20 K for [Formula: see text] and 0.10, respectively. We attribute the new magnetic transition at [Formula: see text], occurring well inside the SDW phase, to a reorganization of the Fermi surface due to Fe-to-Mn substitutions. These give rise to enhanced magnetic fluctuations along the incommensurate wavevector [Formula: see text], further increased by the RKKY interactions among Mn impurities.

8.
Sci Adv ; 5(11): eaav8465, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31819897

RESUMEN

We report on muon spin rotation experiments probing the magnetic penetration depth λ(T) in the layered superconductors in 2H-NbSe2 and 4H-NbSe2. The current results, along with our earlier findings on 1T'-MoTe2 (Guguchia et al.), demonstrate that the superfluid density scales linearly with T c in the three transition metal dichalcogenide superconductors. Upon increasing pressure, we observe a substantial increase of the superfluid density in 2H-NbSe2, which we find to correlate with T c. The correlation deviates from the abovementioned linear trend. A similar deviation from the Uemura line was also observed in previous pressure studies of optimally doped cuprates. This correlation between the superfluid density and T c is considered a hallmark feature of unconventional superconductivity. Here, we show that this correlation is an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T c/T F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the charge density wave state.

9.
Sci Rep ; 7(1): 17370, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234110

RESUMEN

The compound Sr0.5Ce0.5FBiS2 belongs to the intensively studied family of layered BiS2 superconductors. It attracts special attention because superconductivity at T sc = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T C = 7.5 K. Recently it was reported that upon replacing S by Se T C drops and ferromagnetism becomes of an itinerant nature. At the same time T sc increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study (µSR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr0.5Ce0.5FBiS2-x Se x with x = 0.5 and 1.0. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For x = 0.5 and x = 1.0 we find a ferromagnetic volume fraction of ~8 % and ~30 % at T = 0.25 K, well below T C = 3.4 K and T C = 3.3 K, respectively. For x = 1.0 (T sc = 2.9 K) the superconducting phase occupies most (~64 %) of the remaining sample volume, as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA