RESUMEN
The impact of electromagnetic fields on human health has been investigated in recent years using various model organisms, yet the findings remain unclear. In our work, we examined the effect of less-explored, weak electromagnetic fields commonly found in the urban environments we inhabit. We studied different impacts of electromagnetic fields with a frequency of 50 Hz and a combination of 50 Hz and 150 Hz, on both yeasts (Saccharomyces cerevisiae) and human macrophages. We determined growth, survival, and protein composition (SDS-PAGE) (Saccharomyces cerevisiae) and morphology of macrophages (human monocytic cell line). In yeast, the sole observed change after 24 h of exposure was the extension of the exponential growth phase by 17 h. Conversely, macrophages exhibited morphological transformations from the anti-inflammatory to the pro-inflammatory type within just 2 h of exposure to the electromagnetic field. Our results suggest that effects of electromagnetic field largely depend on the model organism. The selection of an appropriate model organism proves essential for the study of the specific impacts of electromagnetic fields. The potential risk associated with the presence of pro-inflammatory M1 macrophages in everyday urban environments primarily arises from the continual promotion of inflammatory reactions within a healthy organism and deserves further investigation.
Asunto(s)
Campos Electromagnéticos , Macrófagos , Saccharomyces cerevisiae , Humanos , Macrófagos/metabolismo , Macrófagos/citología , Saccharomyces cerevisiae/efectos de la radiación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , CiudadesRESUMEN
BACKGROUND: The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP). METHODS: Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting. RESULTS: Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease. CONCLUSION: The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.
Asunto(s)
Apolipoproteína A-I/sangre , Enfermedades Cardiovasculares/sangre , Proteoma/metabolismo , Anciano , Electroforesis en Gel Bidimensional , Femenino , Humanos , Masculino , Peso Molecular , Análisis de Componente Principal , Isoformas de Proteínas/sangreRESUMEN
Hereditary dysfibrinogenemia is a rare disorder wherein an inherited abnormality in fibrinogen structure may result in defective fibrin function and/or structure. Congenital hypofibrinogenemia is a rare autosomal bleeding disorder, either recessive or dominant, characterized by a low fibrinogen plasma level. A 28-year-old asymptomatic woman (fibrinogen Rokycany) and a 54-year-old man with thrombosis and pulmonary embolism (fibrinogen Znojmo) were investigated for a suspected fibrinogen mutation after abnormal coagulation tests results were obtained. DNA sequencing showed the heterozygous point mutation Bß Asn351Lys in fibrinogen Rokycany and the heterozygous point mutation Bß Arg237Ser in fibrinogen Znojmo, respectively. The kinetics of fibrinopeptide release was found to be normal in both cases. Fibrinolysis was impaired in the Znojmo variant. The average fibril diameters of Znojmo fibrin was slightly increased, but not differing significantly from normal; formed by less fibrils with abrupt fibril terminations. Rheological studies revealed a softer clot. Rokycany fibrin was formed by significantly narrower fibrils than normal fibrin; and the clot was denser than the control clot. Rheological studies revealed a stiffer clot. Impaired fibrinolysis and abnormal clot morphology may be the cause of thrombotic episodes in the patient with Znojmo mutation. New cases of hypofibrinogenemia and dysfibrinogenemia, found by routine coagulation testing, were genetically identified as a novel fibrinogen variants Bß Asn351Lys (fibrinogen Rokycany) and Bß Arg237Ser (fibrinogen Znojmo), respectively.