RESUMEN
Herein we report for the first time the diastereoselective synthesis of (2R,3aR,7aS)- and (2S,3aS,7aR)-octahydroindole-2-phosphonic acid (OicP trans-fused stereoisomers) from diethyl (R)- and (S)-phosphopyroglutamate derivative. The key steps of this procedure are the ruthenium tetroxide oxidation of enantiomerically pure diethyl (R)- and (S)-phosphoprolinate obtained through Katritzky's benzotriazole-oxazolidine methodology, a highly diastereoselective successive double 4,5-diallylation of diethyl (R)- and (S)-phosphopyroglutamate with allyl bromide and allyltrimethylsilane with a trans-addition mode, and a ring-closing metathesis with Grubbs' first-generation ruthenium catalyst.
RESUMEN
An expedient synthetic entry to cis-4-hydroxyphosphonic and cis-4-hydroxyphosphinic analogs of cis-4-hydroxypipecolic acid is presented in this paper. The main feature of this methodology is the highly regioselective addition of silyl phosphites or phosphonites to cyclic 1-benzyloxycarbonyl enaminones. Interestingly, the hydride reduction of the resulting 2-phospho-4-oxopiperidine proceeds with high diastereofacial preference using NaBH4. In the last step, the cleavage of N-Cbz group under hydrogenolysis followed by the hydrolysis of the phosphonate or phosphinate functionalities, led to the target cis-4-hydroxyphosphonic and cis-4-hydroxyphosphinic acids, respectively.
Asunto(s)
Organofosfonatos , Ácidos Pipecólicos , HidrólisisRESUMEN
Two new strategies for the efficient synthesis of racemic 1,2,3,4-tetrahydroisoquinoline-3-phosphonic acid (TicP) (±)-2 have been developed. The first strategy involves the electron-transfer reduction of the easily obtained α,ß-dehydro phosphonophenylalanine followed by a Pictet-Spengler cyclization. The second strategy involves a radical decarboxylation-phosphorylation reaction on 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). In both strategies, the highly electrophilic N-acyliminium ion is formed as a key intermediate, and the target compound is obtained in good yield using mild reaction conditions and readily available starting materials, complementing existing methodologies and contributing to the easy accessibility of (±)-2 for further research.
Asunto(s)
Ácidos Fosforosos/síntesis química , Tetrahidroisoquinolinas/síntesis química , Ciclización , Descarboxilación , Estructura Molecular , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Ácidos Fosforosos/química , Fosforilación , Estereoisomerismo , Tetrahidroisoquinolinas/químicaRESUMEN
Kinetically controlled cyclocondensation of stereoisomeric and ring-chain tautomeric mixture of (±)-hydroxylactone 1 and 0.5 equiv of (R)-phenylglycinol provided tricyclic oxazoloisoindolone lactam (3R,5aS,9aR,9bS)-2a, a versatile intermediate for further stereocontrolled transformations to access enantiopure cis-fused octahydroisoindolones. An extension of this methodology was successfully applied to the synthesis of the 5,6-dihydroxy derivative (3aR,5R,6S,7aS)-17.
Asunto(s)
Lactamas , EstereoisomerismoRESUMEN
Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.
Asunto(s)
Antifúngicos/química , Aspergillus fumigatus/enzimología , Quitinasas , Inhibidores Enzimáticos/química , Proteínas Fúngicas , Simulación del Acoplamiento Molecular , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Hexosaminidasas/antagonistas & inhibidores , Hexosaminidasas/químicaRESUMEN
In this paper, we report the synthesis of a new series of α-aminophosphonates derivatives based in an efficient three-component reaction. All compounds prepared showed significant anti-inflammatory activity, being the compounds 1a, 1c, 1d, 1f, 2b and 2c the most promising ones, in terms of maximal efficacy (over 95%), potency (ED50 range between 0.7 and 10.1â¯mg/ear) and relative potency (range from 0.04 to 0.67). Compounds 1a, 1c, 1d and 1f significantly decrease the number of neutrophils (range from 46.7 to 63.0%) and monocytes (18.9-34.1%) in blood samples from the orbital sinus. Additionally, QSAR model revealed that the spherical molecular shape and the location of the HOMO on the phenyl ring improves the anti-inflammatory activity of the compounds. The values of R2, Q2, s and F statistical parameters and the QUIK, asymptotic Q2 and Overfitting rules validate the descriptive and predictive ability of the QSAR model. Altogether these results suggest that these new α-aminophosphonates are potential agents for the treatment of inflammation.
Asunto(s)
Antiinflamatorios/uso terapéutico , Etanolaminas/uso terapéutico , Inflamación/tratamiento farmacológico , Organofosfonatos/uso terapéutico , Relación Estructura-Actividad Cuantitativa , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Etanolaminas/síntesis química , Etanolaminas/química , Ratones , Estructura Molecular , Monocitos/metabolismo , Neutrófilos/metabolismo , Organofosfonatos/síntesis química , Organofosfonatos/químicaRESUMEN
Shikimic acid (SA) pathway is the common route used by bacteria, plants, fungi, algae, and certain Apicomplexa parasites for the biosynthesis of aromatic amino acids and other secondary metabolites. As this essential pathway is absent in mammals designing inhibitors against implied enzymes may lead to the development of antimicrobial and herbicidal agents harmless to humans. Shikimate dehydrogenase (SDH) is the fourth enzyme of the SA pathway. In this contribution, a series of SA amide derivatives were synthesised and evaluated for in vitro SDH inhibition and antibacterial activity against Escherichia coli. All tested compounds showed to be mixed type inhibitors; diamide derivatives displayed more inhibitory activity than synthesised monoamides. Among the evaluated compounds, molecules called 4a and 4b were the most active derivatives with IC50 588 and 589 µM, respectively. Molecular modelling studies suggested two different binding modes of monoamide and diamide derivatives to the SDH enzyme of E. coli.
Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Escherichia coli/enzimología , Ácido Shikímico/farmacología , Oxidorreductasas de Alcohol/metabolismo , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Conformación Molecular , Ácido Shikímico/síntesis química , Ácido Shikímico/química , Relación Estructura-ActividadRESUMEN
The synthesis of six α,ß,-unsaturated amides and six 2,4-disubstituted oxazolines derivatives and their evaluation against two Mycobacterium tuberculosis strains (sensitive H37Rv and a resistant clinical isolate) is reported. 2,4-Disubstituted oxazolines (S)-3b,d,e were the most active in the sensitive strain with a MIC of 14.2, 13.6 and 10.8µM, respectively, and the compounds (S)-3d,f were the most active against resistant strain with a MIC of 6.8 and 7.4µM. The ex-vivo evaluation of hepatotoxicity on precision-cut rat liver slices was also tested for the α,ß-unsaturated amides (S)-2b and (S)-2d,f and for the oxazolines (S)-3b and (S)-3d,f at different concentrations (5, 15 and 30µg/mL). The results indicate that these compounds possess promising antimycobacterial activity and at the same time are not hepatotoxic. These findings open the possibility for development of new drugs against tuberculosis.
Asunto(s)
Amidas/química , Antituberculosos/síntesis química , Oxazoles/química , Amidas/síntesis química , Amidas/farmacología , Animales , Antituberculosos/química , Antituberculosos/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Sensibilidad Microbiana , Microscopía , Mycobacterium tuberculosis/efectos de los fármacos , Oxazoles/síntesis química , Oxazoles/farmacología , Ratas , Relación Estructura-ActividadRESUMEN
Practical and convenient method for the synthesis of novel phosphonopeptides 8a-h and 10a-f incorporating the quaternary α-aminophosphonate 6 is reported. The target compounds were prepared in moderate to good yield based on the preparation of the quaternary α-aminophosphonate 6 followed by the formation of the α-bromoamide 7 and subsequent nucleophilic substitution reaction with several amines or by peptide bond formation with several amino acids and with the quaternary α-aminophosphonate 6, using isobutyl chloroformate as activating agent under racemization-free condition.
Asunto(s)
Ácidos Aminoisobutíricos/química , Glicopéptidos/síntesis química , Organofosfonatos/síntesis química , Acilación , Catálisis , Formiatos/química , Hidrogenación , Hidrólisis , Solventes/químicaRESUMEN
α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed.
Asunto(s)
Aminoácidos/química , Aminoácidos/síntesis química , Ácidos Fosfínicos/química , Ácidos Fosfínicos/síntesis químicaRESUMEN
We report here a practical and efficient synthesis of α-aminophosphonic acid incorporated into 1,2,3,4-tetrahydroquinoline and 1,2,3,4-tetrahydroisoquinoline heterocycles, which could be considered to be conformationally constrained analogues of pipecolic acid. The principal contribution of this synthesis is the introduction of the phosphonate group in the N-acyliminium ion intermediates, obtained from activation of the quinoline and isoquinoline heterocycles or from the appropriate δ-lactam with benzyl chloroformate. Finally, the hydrolysis of phosphonate moiety with simultaneous cleavage of the carbamate afforded the target compounds.
Asunto(s)
Organofosfonatos/química , Organofosfonatos/síntesis química , Quinolinas/química , Tetrahidroisoquinolinas/químicaRESUMEN
An efficient synthesis of enantiomerically-pure ß-aryl-γ-lactams is described. The principal feature of this synthesis is the practical resolution of ß-aryl-γ-lactams with (S)-Naproxen. The procedure is based on the Michael addition of nitromethane to benzylidenemalonates, which was easily obtained, followed by the reduction of the γ-nitroester in the presence of Raney nickel and the subsequent saponification/decarboxylation reaction. The utility of this methodology was highlighted by the preparation of enantiomerically-pure (R)- and (S)-Baclofen hydrochloride.
Asunto(s)
Baclofeno/síntesis química , Lactamas/síntesis química , Naproxeno/química , Catálisis , EstereoisomerismoRESUMEN
Synthesis and structural characterization of 1,4,2-oxazaphosphepines is described. The 1,4,2-oxazaphosphepines were obtained from reaction of chiral 1,3-benzoxazines with dichlorophenylphosphine or triethyl phosphite. The configuration of some of these compounds was stablished by X-ray analysis.
Asunto(s)
Fenoles/química , Fenoles/síntesis química , EstereoisomerismoRESUMEN
A regioselective synthesis has been developed for the preparation of a series of N,N'-disubstituted 4,4'-carbonylbis(carbamoylbenzoic) acids and N,N'-disubstituted bis(carbamoyl) terephthalic acids by treatment of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (1) and 1,2,4,5-benzenetetracarboxylic dianhydride (2) with arylalkyl primary amines (A-N). The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT). All products were characterized by NMR, FTIR, and MS.
Asunto(s)
Anhídridos/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , Técnicas de Química Sintética , Modelos Moleculares , Conformación MolecularRESUMEN
In this study, the hydrolysis of ethyl azolylacetates and ethyl cinnamates using K2CO3/ethanol under microwave irradiation was developed. For this purpose, ethyl azolylacetates were first synthesized by nucleophilic substitution between the corresponding azole and ethyl bromoacetate under sonication at 50 °C for 3 h, yielding derivatives with 10-92% chemical yields, while ethyl cinnamates were obtained by a microwave-assisted Horner-Wadsworth-Emmons (HWE) reaction of triethyl phosphonoacetate with a variety of aryl aldehydes at 140 °C for 20 min, yielding derivatives with moderate to high yields (67-98%). Initially, the optimization of the hydrolysis reaction was performed using ethyl pyrazolylacetate as a model starting material while varying the temperature, time, and base equivalents; the best results were achieved by carrying out the reaction at 180 °C for 20 min with 3.0 eq of K2CO3. This simple and greener method facilitated the synthesis of potassium carboxylates in moderate to high yields, 80-98% for azolyl derivatives and 73-98% for cinnamate derivatives. The structures of all potassium carboxylates were confirmed by FTIR, 1H, 13C NMR, and HRMS.
RESUMEN
Suicide is a global public health issue, with a particularly high incidence in individuals suffering from Major Depressive Disorder (MDD). The role of cholesterol in suicide risk remains controversial, prompting investigations into genetic markers that may be implicated. This study examines the association between CYP46A1 polymorphisms, specifically SNPs rs754203 and rs4900442, and suicide risk in a Mexican MDD patient cohort. Our study involved 188 unrelated suicide death victims, 126 MDD patients, and 144 non-suicidal controls. Genotypic and allelic frequencies were assessed using the Real Time-polymerase chain reaction method, and associations with suicide risk were evaluated using chi-square tests. The study revealed significant differences in allelic and genotypic frequencies in rs754203 SNP between suicide death and controls. The CYP46A1 rs754203 genotype G/G was significantly linked with suicide, and the G allele was associated with a higher risk of suicide (OR = 1.370, 95% CI = 1.002-1.873). However, we did not observe any significant differences in genotype distribution or allele frequencies of CYP46A1 rs4900442. Our study suggests that carriers of the CYP46A1 rs754203 G allele (A/G + G/G) may play a role in suicidal behavior, especially in males. Our findings support that the CYP46A1 gene may be involved in susceptibility to suicide, which has not been investigated previously. These results underscore the importance of further research in different populations to elucidate the genetic underpinnings of the role of CYP46A1 in suicide risk and to develop targeted interventions for at-risk populations.
Asunto(s)
Trastorno Depresivo Mayor , Suicidio , Masculino , Humanos , Colesterol 24-Hidroxilasa , Trastorno Depresivo Mayor/genética , Frecuencia de los Genes , Polimorfismo de Nucleótido SimpleRESUMEN
Among the biological targets extensively investigated to improve inflammation and chronic inflammatory conditions, cyclooxygenase enzymes (COXs) occupy a prominent position. The inhibition of these enzymes, essential for mitigating inflammatory processes, is chiefly achieved through Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). In this work, we introduce a novel method-based on computational molecular docking-that could aid in the structure-based design of new compounds or the description of the anti-inflammatory activity of already-tested compounds. For this, we used eight crystal complexes (four COX-1 and COX-2 each), and each pair had a specific NSAID: Celecoxib, Meloxicam, Ibuprofen, and Indomethacin. This selection was based on the ligand selectivity towards COX-1 or COX-2 and their binding mode. An interaction profile of each NSAID was compiled to detect the residues that are key for their binding mode, highlighting the interaction made by the Me group. Furthermore, we rigorously validated our models based on structural accuracy (RMSD < 1) and (R2 > 70) using eight NSAIDs and thirteen compounds with IC50 values for each enzyme. Therefore, this model can be used for the binding mode prediction of small and structurally rigid compounds that work as COX inhibitors or the prediction of new compounds that are designed by means of a structure-based approach.
RESUMEN
In this work, both experimental and theoretical methods were used to study the photophysical and metal ion binding properties of a series of new aminobenzamide-aminonaphthalimide (2ABZ-ANAPIM) fluorescent dyads. The 2-aminobenzamide (2ABZ) and 6-aminonaphthalimide (ANAPIM) fluorophores were linked through alkyl chains (C2 to C6) to obtain four fluorescent dyads. These dyads present a highly efficient (0.61 to 0.98) Förster Resonant Energy Transfer (FRET) from the 2ABZ to the ANAPIM due to the 2ABZ emission and ANAPIM excitation band overlap and the configurational stacking of both aromatic systems which allows the energy transfer. These dyads interact with Cu2+ and Hg2+ metal ions in solution inhibiting the FRET mechanism by the cooperative coordination of both 2ABZ and ANAPIM moieties. Both experimental and theoretical results are consistent and describe clearly the photophysical and coordination properties of these new dyads.
RESUMEN
The diastereoisomers of α-aminophosphonates are key intermediates in the synthesis of enantiomerically pure α-aminophosphonic acids, which are analogs of α-amino acids. Although several methods have been reported for the diastereoselective synthesis of α-aminophosphonates, their mass spectrometry (MS) fragmentation patterns have not yet been fully investigated. The work described here involved a detailed study of the fragmentation of enriched α-aminophosphonate diastereoisomers by chemical ionization (CI-MS) and fast atom bombardment (FAB)-MS. The complete characterization of the different conventional MS fragmentation pathways is represented and this intriguing exercise required the use of tandem mass spectrometry (MS/MS) experiments and high-resolution accurate mass measurements. All α-aminophosphonates gave prominent pseudomolecular ions, protonated molecules [MH](+) , and their fragmentations mainly showed a loss of dimethyl phosphite to give the corresponding iminium ions as base peaks for α-aminophosphonates bearing methylbenzyl and 2,2-dimethylbutyl fragments. The loss of the chiral fragment from the iminium ions bearing the (S)-1-(1-naphthyl)ethyl group gave rise to a base peak due to aryl cations. The nature of all fragment ions were confirmed by high-resolution mass spectrometry (HRMS).
RESUMEN
We describe a protocol developed for the preparation of ß-enaminoketones derived from 1,3-cyclohexanediones, and their subsequent reduction by sodium in THF-isopropyl alcohol to afford cis- and trans-3-aminocyclohexanols.