Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 27(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014566

RESUMEN

Gas chromatography/mass spectrometry (GC/MS) is a long-standing technique for the analysis of volatile organic compounds (VOCs). When coupled with the Ion Analytics software, GC/MS provides unmatched selectivity in the analysis of complex mixtures and it reduces the reliance on high-resolution chromatography to obtain clean mass spectra. Here, we present an application of spectral deconvolution, with mass spectral subtraction, to identify a wide array of VOCs in green and roasted coffees. Automated sequential, two-dimensional GC-GC/MS of a roasted coffee sample produced the retention index and spectrum of 750 compounds. These initial analytes served as targets for subsequent coffee analysis by GC/MS. The workflow resulted in the quantitation of 511 compounds detected in two different green and roasted coffees. Of these, over 100 compounds serve as candidate differentiators of coffee quality, AAA vs. AA, as designated by the Coopedota cooperative in Costa Rica. Of these, 72 compounds survive the roasting process and can be used to discriminate green coffee quality after roasting.


Asunto(s)
Café , Compuestos Orgánicos Volátiles , Café/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
2.
Ann Bot ; 124(1): 41-52, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30698658

RESUMEN

BACKGROUND AND AIMS: Future shifts in precipitation regimes and temperature are expected to affect plant traits dramatically. To date, many studies have explored the effects of acute stresses, but few have investigated the consequences of prolonged shifts in climatic conditions on plant growth and chemistry. METHODS: Plant size and metabolite profiles were assessed on naturally occurring Plantago lanceolata plants growing under different precipitation (ambient, 50 % less than ambient = drought) and temperature (ambient, +0.8, +2.4 and +4.0 °C above ambient) treatments at the Boston Area Climate Experiment (constructed in 2007). KEY RESULTS: The analysis of primary and secondary metabolites revealed pronounced effects of drought, and a precipitation × temperature interaction. Strikingly, the effects of precipitation were minimal at the two lower temperatures but marked at the two higher temperatures. Compared with the ambient condition, plants in the drought plots had lower concentrations of foliar nitrogen, amino acids and most sugars, and higher concentrations of sorbitol, citrate and malate, common stress-induced metabolites. This pattern was especially evident at high temperatures. Moreover, drought-exposed plants showed lower concentrations of catalpol, an iridoid glycoside. CONCLUSIONS: While the effect of warming on the metabolite profiles was less pronounced, differences were marked when combined with drought. Given the interactive effect of environmental variables on leaf chemistry, and the fact that woody and herbaceous plants seem to differ in their responses to temperature and precipitation, future studies should account for the direct and indirect effects of the community response to multifactorial field conditions.


Asunto(s)
Sequías , Plantago , Nitrógeno , Hojas de la Planta , Temperatura
3.
Ecology ; 99(5): 1018-1023, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29608784

RESUMEN

A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions.


Asunto(s)
Hemípteros , Tsuga , Animales , Insectos
4.
Ecology ; 99(8): 1783-1791, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729193

RESUMEN

Forests make up a large portion of terrestrial plant biomass, and the long-lived woody plants that dominate them possess an array of traits that deter consumption by forest pests. Although often extremely effective against native consumers, invasive species that avoid or overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is especially true when multiple invasive species co-occur, since interactions between invasive herbivores may yield non-additive effects on the host. While the threat posed by invasive forest pests is well known, long-term field experiments are necessary to explore these consumer-host interactions at appropriate spatial and temporal scales. Moreover, it is important to measure multiple variables to get a "whole-plant" picture of their combined impact. We report the results of a 4-yr field experiment addressing the individual and combined impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, manipulation of nitrogen pools, and the loss of stored resources likely accelerates host decline through disruption of homeostatic source-sink dynamics occurring at the whole-plant level. Our research stresses the importance of considering long-term impacts to predict how plants will cope with contemporary pressures experienced in disturbed forests.


Asunto(s)
Hemípteros , Herbivoria , Animales , Ecosistema , Bosques , New England , Árboles , Tsuga
5.
Oecologia ; 186(4): 973-982, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29362885

RESUMEN

Herbivore-induced changes in host quality mediate indirect interactions between herbivores. The nature of these indirect interactions can vary depending on the identity of herbivores involved, species-specific induction of defense-signaling pathways, and sequence of attack. However, our understanding of the role of these signaling pathways in the success of multiple exotic herbivores is less known. Eastern hemlock (Tsuga canadensis) is attacked by two invasive herbivores [elongate hemlock scale (EHS; Fiorinia externa) and hemlock woolly adelgid (HWA; Adelges tsugae)] throughout much of its range, but prior attack by EHS is known to deter HWA. The potential role of phytohormones in this interaction is poorly understood. We measured endogenous levels of phytohormones in eastern hemlock in response to attack by these invasive herbivores. We also used exogenous application of methyl jasmonate (MJ) and acibenzolar-S-methyl (ASM), a salicylic acid (SA) pathway elicitor, to test the hypothesis that defense-signaling phytohormones typically induced by herbivores could deter HWA. Resistance to adelgid attack was assessed using a behavioral assay. Adelgid feeding significantly elevated both abscisic acid (ABA) and SA in local tissues, while EHS feeding had no detectable effect on either phytohormone. HWA progrediens and sistens crawlers preferred to settle on ASM-treated foliage. In contrast, HWA crawlers actively avoided settlement on MJ-treated foliage. We suggest that induction of ABA- and SA-signaling pathways, in concert with defense-signaling interference, may aid HWA invasion success, and that defense-signaling interference, induced by exotic competitors, may mediate resistance of native hosts.


Asunto(s)
Hemípteros , Herbivoria , Animales , Reguladores del Crecimiento de las Plantas , Especificidad de la Especie , Tsuga
6.
Ann Bot ; 113(4): 721-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335663

RESUMEN

BACKGROUND AND AIMS: Exotic herbivores that lack a coevolutionary history with their host plants can benefit from poorly adapted host defences, potentially leading to rapid population growth of the herbivore and severe damage to its plant hosts. The hemlock woolly adelgid (Adelges tsugae) is an exotic hemipteran that feeds on the long-lived conifer eastern hemlock (Tsuga canadensis), causing rapid mortality of infested trees. While the mechanism of this mortality is unknown, evidence indicates that A. tsugae feeding causes a hypersensitive response and alters wood anatomy. This study investigated the effect of A. tsugae feeding on biomechanical properties at different spatial scales: needles, twigs and branches. METHODS: Uninfested and A. tsugae-infested samples were collected from a common garden experiment as well as from naturally infested urban and rural field sites. Tension and flexure mechanical tests were used to quantify biomechanical properties of the different tissues. In tissues that showed a significant effect of herbivory, the potential contributions of lignin and tissue density on the results were quantified. KEY RESULTS: Adelges tsugae infestation decreased the abscission strength, but not flexibility, of needles. A. tsugae feeding also decreased mechanical strength and flexibility in currently attacked twigs, but this effect disappeared in older, previously attacked branches. Lignin and twig tissue density contributed to differences in mechanical strength but were not affected by insect treatment. CONCLUSIONS: Decreased strength and flexibility in twigs, along with decreased needle strength, suggest that infested trees experience resource stress. Altered growth patterns and cell wall chemistry probably contribute to these mechanical effects. Consistent site effects emphasize the role of environmental variation in mechanical traits. The mechanical changes measured here may increase susceptibility to abiotic physical stressors in hemlocks colonized by A. tsugae. Thus, the interaction between herbivore and physical stresses is probably accelerating the decline of eastern hemlock, as HWA continues to expand its range.


Asunto(s)
Hemípteros/fisiología , Tsuga/fisiología , Tsuga/parasitología , Animales , Fenómenos Biomecánicos , Herbivoria , Especies Introducidas , Lignina/metabolismo , Modelos Lineales , Hojas de la Planta/anatomía & histología , Hojas de la Planta/parasitología , Hojas de la Planta/fisiología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/parasitología , Tallos de la Planta/fisiología , Estrés Fisiológico , Árboles , Tsuga/anatomía & histología
7.
Mov Ecol ; 12(1): 34, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689374

RESUMEN

BACKGROUND: While interactions in nature are inherently local, ecological models often assume homogeneity across space, allowing for generalization across systems and greater mathematical tractability. Density-dependent disease models are a prominent example of models that assume homogeneous interactions, leading to the prediction that disease transmission will scale linearly with population density. In this study, we examined how the scale of larval butterfly movement interacts with the resource landscape to influence the relationship between larval contact and population density in the Baltimore checkerspot (Euphydryas phaeton). Our study was inspired by the recent discovery of a viral pathogen that is transmitted horizontally among Baltimore checkerspot larvae. METHODS: We used multi-year larvae location data across six Baltimore checkerspot populations in the eastern U.S. to test whether larval nests are spatially clustered. We then integrated these spatial data with larval movement data in different resource contexts to investigate whether heterogeneity in spatially local interactions alters the assumed linear relationship between larval nest density and contact. We used Correlated Random Walk (CRW) models and field observations of larval movement behavior to construct Probability Distribution Functions (PDFs) of larval dispersal, and calculated the overlap in these PDFs to estimate conspecific contact within each population. RESULTS: We found that all populations exhibited significant spatial clustering in their habitat use. Subsequent larval movement rates were influenced by encounters with host plants and larval age, and under many movement scenarios, the scale of predicted larval movement was not sufficient to allow for the "homogeneous mixing" assumed in density dependent disease models. Therefore, relationships between population density and larval contact were typically non-linear. We also found that observed use of available habitat patches led to significantly greater contact than would occur if habitat use were spatially random. CONCLUSIONS: These findings strongly suggest that incorporating larval movement and spatial variation in larval interactions is critical to modeling disease outcomes in E. phaeton. Epidemiological models that assume a linear relationship between population density and larval contact have the potential to underestimate transmission rates, especially in small populations that are already vulnerable to extinction.

8.
Ann Bot ; 112(4): 757-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23475954

RESUMEN

BACKGROUND AND AIMS: Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages. METHODS: Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), 'selected' and undamaged 'control' trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years. KEY RESULTS: The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora). CONCLUSIONS: This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.


Asunto(s)
Gastrópodos/fisiología , Herbivoria , Salix/fisiología , Selección Genética , Animales , Glicósidos/metabolismo , Fenoles/metabolismo , Taninos/metabolismo
10.
J Chem Ecol ; 39(4): 465-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23483346

RESUMEN

We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.


Asunto(s)
Herbivoria/fisiología , Plantas/metabolismo , Animales , Biotransformación , Ecosistema , Feromonas/metabolismo , Feromonas/farmacocinética , Plantas/química , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Toxinas Biológicas/farmacocinética
11.
Oecologia ; 169(4): 1015-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22311255

RESUMEN

Plants in nature are often attacked by multiple enemies whose effect on the plant cannot always be predicted based on the outcome of individual attacks. We investigated how two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) (HWA) and the elongate hemlock scale (Fiorinia externa) (EHS), alter host plant quality (measured as amino acid concentration and composition) when feeding individually or jointly on eastern hemlock (Tsuga canadensis), an important long-lived forest tree that is in severe decline. The joint herbivore treatments included both simultaneous and sequential infestations by the two herbivores. We expected resource depletion over time, particularly in response to feeding by HWA. In contrast, HWA dramatically increased the concentration and altered the composition of individual free amino acids. Compared to control trees, HWA increased total amino acid concentration by 330% after 1 year of infestation. Conversely, EHS had a negligible effect when feeding individually. Interestingly, there was a marginally significant HWA × EHS interaction that suggests the potential for EHS presence to reduce the impact of HWA on foliage quality when the two species co-occur. We suggest indirect effects of water stress as a possible physiological mechanism for our results. Understanding how species interactions change the physiology of a shared host is crucial to making more accurate predictions about host mortality and subsequent changes in affected communities and ecosystems, and to help design appropriate management plans.


Asunto(s)
Hemípteros/fisiología , Herbivoria , Tsuga/fisiología , Aminoácidos/metabolismo , Animales , Conducta Alimentaria , Especies Introducidas , Densidad de Población
12.
Am J Bot ; 98(11): 1816-24, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22034482

RESUMEN

PREMISE OF THE STUDY: Xylem sectoriality limits nutrient translocation throughout the plant, which may constrain growth following partial defoliation by herbivores. To date, the implications for nutrient allocation have not been assessed, and sectoriality studies lack a modeling framework for relating intersector transport to the hydraulic properties of the stem. METHODS: We present an Ohm's law model for sectoriality of xylem transport in basil (Ocimum basilicum), which we parameterized and tested using hydroponically grown split-root basil, pruned to two branches. To evaluate xylem resistance, we forced KCl solution through excised stems along either direct or indirect pathways. To examine the effect of partial defoliation on nutrient allocation, we applied (15)N-NO3 to one half of the root system after one of three defoliation treatments: uniform, orthostichous to label, or opposite the label. KEY RESULTS: In support of our model, we found a tight correlation between total water uptake and total leaf area and between the actual and predicted proportions of water taken up from the labeled container. Significantly more ¹5N accumulated in orthostichous than in opposite sector leaves for the uniform and opposite defoliation treatments, but not for the orthostichous defoliation treatment. Across individuals, ¹5N distribution varied as predicted by the model, but there was generally 10% more ¹5N crossover than predicted. CONCLUSIONS: These results support our model and suggest high potential integration for O. basilicum. The fact that our model consistently underestimated the rate of crossover suggests that other mechanisms are also in play. Future research should evaluate possible mechanisms for this mixing, including the role of transporters in specialized transfer cells.


Asunto(s)
Modelos Biológicos , Nitrógeno/metabolismo , Ocimum basilicum/metabolismo , Agua/metabolismo , Xilema/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Trazadores Radiactivos
13.
Oecologia ; 167(1): 1-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21431939

RESUMEN

Herbivores can cause numerous changes in primary plant metabolism. Recent studies using radioisotopes, for example, have found that insect herbivores and related cues can induce faster export from leaves and roots and greater partitioning into tissues inaccessible to foraging herbivores. This process, termed induced resource sequestration, is being proposed as an important response of plants to cope with herbivory. Here, we review the evidence for resource sequestration and suggest that associated allocation and ecological costs may limit the benefit of this response because resources allocated to storage are not immediately available to other plant functions or may be consumed by other enemies. We then present a conceptual model that describes the conditions under which benefits might outweigh costs of induced resource sequestration. Benefits and costs are discussed in the context of differences in plant life-history traits and biotic and abiotic conditions, and new testable hypotheses are presented to guide future research. We predict that intrinsic factors related to life history, ontogeny and phenology will alter patterns of induced sequestration. We also predict that induced sequestration will depend on certain external factors: abiotic conditions, types of herbivores, and trophic interactions. We hope the concepts presented here will stimulate more focused research on the ecological and evolutionary costs and benefits of herbivore-induced resource sequestration.


Asunto(s)
Conducta Alimentaria , Herbivoria , Plantas/metabolismo , Animales , Cadena Alimentaria , Asignación de Recursos
14.
J Chem Ecol ; 37(12): 1294-303, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22161151

RESUMEN

Induced changes in primary metabolism are important plant responses to herbivory, providing energy and metabolic precursors for defense compounds. Metabolic shifts also can lead to reallocation of leaf resources to storage tissues, thus increasing a plant's tolerance. We characterized whole-plant metabolic responses of tomato (Solanum lycopersicum) 24 h after leaf herbivory by two caterpillars (the generalist Helicoverpa zea and the specialist Manduca sexta) by using GC-MS. We measured 56 primary metabolites across the leaves, stems, roots, and apex, comparing herbivore-attacked plants to undamaged plants and mechanically damaged plants. Induced metabolic change, in terms of magnitude and number of individual concentration changes, was stronger in the apex and root tissues than in undamaged leaflets of damaged leaves, indicating rapid and significant whole-plant responses to damage. Helicoverpa zea altered many more metabolites than M. sexta across most tissues, suggesting an enhanced plant response to H. zea herbivory. Helicoverpa zea herbivory strongly affected concentrations of defense-related metabolites (simple phenolics and precursor amino acids), while M. sexta altered metabolites associated with carbon and nitrogen transport. We conclude that herbivory induces many systemic primary metabolic changes in tomato, and that changes often are specific to a single tissue or type of herbivore. The potential implications of primary metabolic changes are discussed in relation to resistance and tolerance.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Herbivoria , Mariposas Nocturnas/fisiología , Solanum lycopersicum/metabolismo , Análisis de Varianza , Animales , Regulación de la Expresión Génica de las Plantas , Larva/crecimiento & desarrollo , Larva/fisiología , Solanum lycopersicum/genética , Manduca/crecimiento & desarrollo , Manduca/fisiología , Metaboloma , Mariposas Nocturnas/crecimiento & desarrollo , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Especificidad de la Especie
15.
Annu Rev Entomol ; 55: 439-59, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19737084

RESUMEN

Exotic plants provide a unique opportunity to explore the evolution of defense allocation in plants. Many studies have focused on whether enemy release leads to a change in defense allocation. Little research has focused on induced defenses and on how resource availability in the nonindigenous range might cause evolutionary shifts in defense trait allocation. We examine (a) the major evolutionary hypotheses predicting defense expression in plants, (b) the hypotheses explaining defense evolution of exotic species, and (c) the importance of geographic variation in ecological interactions to defense evolution (geographic mosaics). In addition, we review the strengths and weaknesses of experimental approaches, present case studies, and suggest areas that deserve further attention.


Asunto(s)
Evolución Biológica , Ecosistema , Interacciones Huésped-Parásitos , Plantas/inmunología , Animales , Geografía , Insectos/fisiología , Plantas/genética , Plantas/parasitología , Selección Genética
16.
Tree Physiol ; 41(3): 416-427, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33094330

RESUMEN

Our understanding of how conifers respond biochemically to multiple simultaneous herbivore attacks is lacking. Eastern hemlock (Tsuga canadensis; 'hemlock') is fed on by hemlock woolly adelgid (Adelges tsugae; 'adelgid') and by later-instar gypsy moth (Lymantria dispar; 'gypsy moth') caterpillars. The adelgid is a stylet-feeding insect that causes a salicylic acid (SA)-linked response in hemlock, and gypsy moth larvae are folivores that presumably cause a jasmonic acid (JA)-linked response. This system presents an opportunity to study how invasive herbivore-herbivore interactions mediated through host biochemical responses. We used a factorial field experiment to challenge chronically adelgid-infested hemlocks with gypsy moth caterpillars. We quantified 17 phytohormones, 26 phenolic and terpene metabolites, and proanthocyanidin, cell wall-bound (CW-bound) phenolic, and lignin contents. Foliage infested with adelgid only accumulated gibberellins and SA; foliage challenged by gypsy moth only accumulated JA phytohormones. Gypsy moth folivory on adelgid-infested foliage reduced the accumulation of JA phytohormones and increased the SA levels. Both herbivores increased CW-bound phenolics and gypsy moth increased lignin content when feeding alone but not when feeding on adelgid-infested foliage. Our study illustrates the importance of understanding the biochemical mechanisms and signaling antagonism underlying tree responses to multiple stresses and of disentangling local and systemic stress signaling in trees.


Asunto(s)
Hemípteros , Tracheophyta , Animales , Herbivoria , Árboles , Tsuga
17.
New Phytol ; 188(3): 835-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20723074

RESUMEN

• Evidence is emerging to support the notion that in response to herbivory, plants undergo changes in their primary metabolism and are able to fine-tune the allocation of new and existing resources and temporarily direct them to storage organs. • We hypothesized that simulated herbivory increases the export of resources out of the affected tissues and increases allocation to roots. We used short-lived radioisotopes to study in vivo the dynamics of newly incorporated (11)CO(2) and (13)NH(3). Methyl jasmonate (MeJA), a known defense elicitor, was applied to the foliage of tomato plants and 4 h later we monitored leaf uptake, export and whole-plant allocation of [(11)C]photosynthate and [(13)N]amino acids. • There was a marginally significant decrease in the fixation of (11)CO(2), and an increase in the export of newly acquired carbon and nitrogen out of MeJA-treated leaves. The proportion of nitrogen allocated to roots increased, whereas the proportion of carbon did not change. • These results are in agreement with our hypotheses, showing a change in the allocation of resources after treatment with MeJA; this may reduce the chance of resources being lost to herbivores and act as a buffer to biotic stress by increasing the potential for plant regrowth and survival after the attack.


Asunto(s)
Acetatos , Adaptación Fisiológica , Carbono/metabolismo , Ciclopentanos , Nitrógeno/metabolismo , Oxilipinas , Enfermedades de las Plantas , Solanum lycopersicum/metabolismo , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Isótopos de Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Coloración y Etiquetado , Estrés Fisiológico
18.
Plant Cell Environ ; 33(12): 2173-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20716065

RESUMEN

Nitrogen-13 (t(1/2) 9.97 m), a radioactive isotope of nitrogen, offers unique opportunities to explore plant nitrogen utilization over short time periods. Here we describe a method for administering (13)N as gaseous (13)NH(3) to intact leaves of Nicotiana tabacum L. (cv Samsun), and measuring the labelled amino acids using radio high-performance liquid chromatography (HPLC) on tissue extract. We used this method to study the effects of defence induction on plant nitrogen utilization by applying treatments of methyl jasmonate (MeJA), a potent defence elicitor. MeJA caused a significant increase relative to controls in key [(13)N]amino acids, including serine, glycine and alanine by 4 h post-treatment, yet had no effect on (13)NH(3) incorporation, a process that is primarily under the control of the glutamine synthatase/glutamate synthase pathway (GS/GOGAT) in cellular photorespiration. We suggest that the reconfiguration of nitrogen metabolism may reflect induction of non-photorespiratory sources of nitrogen to better serve the plant's defences.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Nicotiana/metabolismo , Nitrógeno/metabolismo , Oxilipinas/metabolismo , Aminoácidos/biosíntesis , Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Nitrógeno/administración & dosificación , Isótopos de Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Estrés Fisiológico
19.
J Chem Ecol ; 36(10): 1058-67, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20842413

RESUMEN

We examined the timeline by which methyl jasmonate (MeJA) reprograms new carbon partitioning into key metabolite pools. The radioactive isotope ¹¹C (t(¹/2) 20.4 min), administered to intact leaves of Nicotiana tabacum L. (cv Samsun) as ¹¹CO(2) gas enabled us to measure changes in new carbon partitioning into soluble sugar and amino acid pools of [¹¹C]photosynthate. A 500 µM MeJA treatment resulted in a decrease in the [¹¹C]soluble sugar pool and an increase in the [¹¹C]amino acid pool after 4 h. This pattern was more pronounced 15 h after treatment. We also examined the timeline for ¹¹C-partitioning into aromatic amino acid metabolites of the shikimate pathway. [¹¹C]Tyrosine, [C¹¹C]phenylalanine and [¹¹C]tryptophan were elevated 1.5-fold, 12-fold and 12-fold, respectively, relative to controls, 4 h after MeJA treatment, while endogeneous pools were unchanged. This suggests that only new carbon is utilized during early stages of defense induction. By 15 h, [C¹¹C]tyrosine and [¹¹C]phenylalanine returned to baseline while [¹¹C]tryptophan was elevated 30-fold, suggesting that MeJA exerts selective control over the shikimate pathway. Finally, we measured trans-cinnamic acid levels as a gauge of downstream phenolic metabolism. Levels were unchanged 4 h after MeJA treatment relative to controls, but were increased 2-fold by 15 h, indicating a lag in response of secondary metabolism.


Asunto(s)
Isótopos de Carbono/metabolismo , Ciclopentanos/farmacología , Nicotiana/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Acetatos/farmacología , Ecosistema , Oxilipinas/farmacología , Fenoles/metabolismo , Fenilalanina/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácido Shikímico/metabolismo , Factores de Tiempo , Nicotiana/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
20.
Front Plant Sci ; 11: 636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547579

RESUMEN

Insect herbivores have dramatic effects on the chemical composition of plants. Many of these induced metabolites contribute to the quality (e.g., flavor, human health benefits) of specialty crops such as the tea plant (Camellia sinensis). Induced chemical changes are often studied by comparing plants damaged and undamaged by herbivores. However, when herbivory is quantitative, the relationship between herbivore pressure and induction can be linearly or non-linearly density dependent or density independent, and induction may only occur after some threshold of herbivory. The shape of this relationship can vary among metabolites within plants. The tea green leafhopper (Empoasca onukii) can be a widespread pest on tea, but some tea farmers take advantage of leafhopper-induced metabolites in order to produce high-quality "bug-bitten" teas such as Eastern Beauty oolong. To understand the effects of increasing leafhopper density on tea metabolites important for quality, we conducted a manipulative experiment exposing tea plants to feeding by a range of E. onukii densities. After E. onukii feeding, we measured volatile and non-volatile metabolites, and quantified percent damaged leaf area from scanned leaf images. E. onukii density had a highly significant effect on volatile production, while the effect of leaf damage was only marginally significant. The volatiles most responsive to leafhopper density were mainly terpenes that increased in concentration monotonically with density, while the volatiles most responsive to leaf damage were primarily fatty acid derivatives and volatile phenylpropanoids/benzenoids. In contrast, damage (percent leaf area damaged), but not leafhopper density, significantly reduced total polyphenols, epigallocatechin gallate (EGCG), and theobromine concentrations in a dose-dependent manner. The shape of induced responses varied among metabolites with some changing linearly with herbivore pressure and some responding only after a threshold in herbivore pressure with a threshold around 0.6 insects/leaf being common. This study illustrates the importance of measuring a diversity of metabolites over a range of herbivory to fully understand the effects of herbivores on induced metabolites. Our study also shows that any increases in leafhopper density associated with climate warming, could have dramatic effects on secondary metabolites and tea quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA