RESUMEN
Type 2 diabetes (T2D) is a chronic systemic disease with a complex etiology, characterized by insulin resistance and mitochondrial dysfunction in various cell tissues. To explore this relationship, we conducted a secondary analysis of complete mtDNA sequences from 1261 T2D patients and 1105 control individuals. Our findings revealed significant associations between certain single-nucleotide polymorphisms (SNPs) and T2D. Notably, the variants m.1438A>G (rs2001030) (controls: 32 [27.6%], T2D: 84 [72.4%]; OR: 2.46; 95%CI: 1.64-3.78; p < 0.001), m.14766C>T (rs193302980) (controls: 498 [36.9%], T2D: 853 [63.1%]; OR: 2.57, 95%CI: 2.18-3.04, p < 0.001), and m.16519T>C (rs3937033) (controls: 363 [43.4%], T2D: 474 [56.6%]; OR: 1.24, 95%CI: 1.05-1.47, p = 0.012) were significantly associated with the likelihood of developing diabetes. The variant m.16189T>C (rs28693675), which has been previously documented in several studies across diverse populations, showed no association with T2D in our analysis (controls: 148 [13.39] T2D: 171 [13.56%]; OR: 1.03; 95%CI: 0.815-1.31; p = 0.83). These results provide evidence suggesting a link between specific mtDNA polymorphisms and T2D, possibly related to association rules, topological patterns, and three-dimensional conformations associated with regions where changes occur, rather than specific point mutations in the sequence.
RESUMEN
Breast cancer has an important incidence in the worldwide female population. Although alterations in the mitochondrial genome probably play an important role in carcinogenesis, the actual evidence is ambiguous and inconclusive. Our purpose was to explore differences in mitochondrial sequences of cases with breast cancer compared with control samples from different origins. We identified 124 mtDNA sequences associated with breast cancer cases, of which 86 were complete and 38 were partial sequences. Of these 86 complete sequences, 52 belonged to patients with a confirmed diagnosis of breast cancer, and 34 sequences were obtained from healthy mammary tissue of the same patients used as controls. From the mtDNA analysis, two polymorphisms with significant statistical differences were found: m.310del (rs869289246) in 34.6% (27/78) of breast cancer cases and 61.7% (21/34) in the controls; and m.315dup (rs369786048) in 60.2% (47/78) of breast cancer cases and 38.2% (13/34) in the controls. In addition, the variant m.16519T>C (rs3937033) was found in 59% of the control sequences and 52% of the breast cancer sequences with a significant statistical difference. Polymorphic changes are evolutionarily related to the haplogroup H of Indo-European and Euro-Asiatic origins; however, they were found in all non-European breast cancers.