Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432413

RESUMEN

OBJECTIVE: Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). METHODS: This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. RESULTS: Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). CONCLUSION: Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.

2.
Hippocampus ; 31(2): 221-231, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33241879

RESUMEN

Past studies find that chronic stress alters inhibitory, GABAergic circuitry of neurons in distinct hippocampal subregions. Less clear is whether these effects persist weeks after chronic stress ends, and whether these effects involve changes in the total number of hippocampal GABAergic neurons or modulates the function of specific GABAergic subtypes. A transgenic mouse line (VGAT:Cre Ai9) containing an indelible marker for GABAergic neurons (tdTomato) throughout the brain was used to determine whether chronic stress alters total GABAergic neuronal number or the expression of two key GABAergic cell subtypes, calretinin expressing (CR+) and somatostatin expressing (SOM+) neurons, and whether these changes endure weeks later. Male and female mice were chronically stressed in wire mesh restrainers for 6h/d/21d (Str) or not (Con), and then allowed a 3 week rest period (Str-Rest) and compared to those without a rest period (Str-NoRest). Epifluorescent microscope images of immunohistochemistry-processed brains were quantified to estimate the total number of fluorescently-labeled hippocampal GABAergic neurons and the proportion that were CR+ or SOM+. Neither chronic stress nor sex altered the total number of GABAergic cells. In contrast, chronic stress reduced the expression of CR+ in the CA3 region of the hippocampus in both males and females, with robust reductions in the DG region of males, but not females, and these changes reversed following a rest period. Chronic stress also reduced the proportion of hippocampal SOM+ neurons and this reduction persisted even with a rest period. These results show chronic stress dynamically reduced CR expression without changing total inhibitory neuronal number and point to CR as a potential new lead to understand mechanisms by which chronic stress alters hippocampal function.


Asunto(s)
Hipocampo , Somatostatina , Animales , Calbindina 2/metabolismo , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Somatostatina/metabolismo
3.
Horm Behav ; 118: 104656, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31862208

RESUMEN

The influence of estrogens on modifying cognition has been extensively studied, revealing that a wide array of factors can significantly impact cognition, including, but not limited to, subject age, estrogen exposure duration, administration mode, estrogen formulation, stress history, and progestogen presence. Less known is whether long-term, extended exposure to estrogens would benefit or otherwise impact cognition. The present study examined the effects of 17ß-estradiol (E2) exposure for seven months, beginning in late adulthood and continuing into middle age, using a regimen of cyclic exposure (bi-monthly subcutaneous injection of 10 µg E2), or Cyclic+Tonic exposure (bi-monthly subcutaneous injection of 10 µg E2 + Silastic capsules of E2) in ovariectomized female Fischer-344-CDF rats. Subjects were tested on a battery of learning and memory tasks. All groups learned the water radial-arm maze (WRAM) and Morris water maze tasks in a similar fashion, regardless of hormone treatment regimen. In the asymptotic phase of the WRAM, rats administered a Cyclic+Tonic E2 regimen showed enhanced performance when working memory was taxed compared to Vehicle and Cyclic E2 groups. Assessment of spatial memory on object placement and object recognition was not possible due to insufficient exploration of objects; however, the Cyclic+Tonic group showed increased total time spent exploring all objects compared to Vehicle-treated animals. Overall, these data demonstrate that long-term Cyclic+Tonic E2 exposure can result in some long-term cognitive benefits, at least in the spatial working memory domain, in a surgically menopausal rat model.


Asunto(s)
Envejecimiento/efectos de los fármacos , Estradiol/administración & dosificación , Memoria a Corto Plazo/efectos de los fármacos , Ovariectomía , Memoria Espacial/efectos de los fármacos , Envejecimiento/fisiología , Animales , Cognición/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Estradiol/farmacología , Femenino , Inyecciones Subcutáneas , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Endogámicas F344
4.
Front Neuroendocrinol ; 49: 114-123, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428548

RESUMEN

Chronic stress results in functional and structural changes to the brain and especially the hippocampus. Decades of research have provided insights into the mechanisms by which chronic stress impairs hippocampal-mediated cognition and the corresponding reduction of hippocampal CA3 apical dendritic complexity. Yet, when chronic stress ends and time passes, which we refer to as a "post-stress rest period," hippocampal-mediated spatial memory deficits begin to improve and CA3 apical dendritic arbors increase in complexity. The processes by which the hippocampus improves from a chronically stressed state are not simply the reversal of the mechanisms that produced spatial memory deficits and CA3 apical dendritic retraction. This review will discuss our current understanding of how a chronically stressed hippocampus improves after a post-stress rest period. Untangling the mechanisms that allow for this post-stress plasticity is a critical next step in understanding how to promote resilience in the face of stressors.


Asunto(s)
Hipocampo , Recuperación de la Función/fisiología , Memoria Espacial/fisiología , Estrés Psicológico , Animales , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
5.
Neurobiol Learn Mem ; 145: 114-118, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28890150

RESUMEN

Chronic stress leads to a dysregulated inhibitory tone that could impact hippocampal-dependent spatial learning and memory. The present study examined whether spatial memory deficits resulting from chronic stress could be overcome by antagonizing the GABAA receptor, a prominent inhibitory receptor of GABA in the hippocampus. Young adult male Sprague-Dawley rats were chronically stressed (STR, wire mesh restraint, 6h/d/21d) or placed in a no-stress control group (CON). When chronic restraint ended, rats were tested on a 2-trial object placement (OP) task at a delay (3h) that would result in chance performance without intervention and then on novel object recognition (NOR) and the elevated plus maze (EPM) to assess non-spatial memory and anxiety profile. In CON rats, Bicuculline (BIC, 0, 0.25, 0.5mg/kg), a GABAA antagonist, injected 30min prior to training led to facilitated OP performance with 0.25 and 0.5mg/kg doses. In contrast, STR rats required BIC at the highest dose (0.5mg/kg) to improve OP performance. While overall object exploration was decreased by chronic stress, motivation or anxiety profile were unlikely to explain these results. These findings reveal two different dose response functions for BIC in control and chronically stressed rats, with the dose response function of BIC being shifted to the right for chronically stressed rats compared to controls in order to improve spatial memory. While the literature demonstrates that chronic stress disrupts hippocampal inhibitory tone, the current study reveals that a single injection to antagonize the GABAA receptor can restore hippocampal-dependent spatial memory in chronically stressed subjects.


Asunto(s)
Antagonistas de Receptores de GABA-A/administración & dosificación , Receptores de GABA-A/fisiología , Memoria Espacial/fisiología , Estrés Psicológico , Animales , Conducta Animal/efectos de los fármacos , Bicuculina/administración & dosificación , Relación Dosis-Respuesta a Droga , Masculino , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Restricción Física , Memoria Espacial/efectos de los fármacos
6.
Eur J Neurosci ; 40(9): 3351-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25156382

RESUMEN

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA3 Hipocampal/metabolismo , Memoria Espacial/fisiología , Estrés Psicológico/metabolismo , Animales , Regulación hacia Abajo , Masculino , Ratas , Ratas Sprague-Dawley , Restricción Física
7.
Neurotrauma Rep ; 5(1): 95-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404523

RESUMEN

Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB), which may exacerbate neuroinflammation post-injury. Few translational studies have examined BBB dysfunction and subsequent neuroinflammation post-TBI in juveniles. We hypothesized that BBB dysfunction positively predicts microglial activation and that vulnerability to BBB dysfunction and associated neuroinflammation are dependent on age at injury. Post-natal day (PND)17 and PND35 rats (n = 56) received midline fluid percussion injury or sham surgery, and immunoglobulin-G (IgG) stain was quantified as a marker of extravasated blood in the brain and BBB dysfunction. We investigated BBB dysfunction and the microglial response in the hippocampus, hypothalamus, and motor cortex relative to age at injury and days post-injury (DPI; 1, 7, and 25). We measured the morphologies of ionized calcium-binding adaptor molecule 1-labeled microglia using cell body area and perimeter, microglial branch number and length, end-points/microglial cell, and number of microglia. Data were analyzed using generalized hierarchical models. In PND17 rats, TBI increased levels of IgG compared to shams. Independent of age at injury, IgG in TBI rats was higher at 1 and 7 DPI, but resolved by 25 DPI. TBI activated microglia (more cells and fewer end-points) in PND35 rats compared to respective shams. Independent of age at injury, TBI induced morphological changes indicative of microglial activation, which resolved by 25 DPI. TBI rats had fewer cells and end-points per cell at 1 and 7 DPI than 25 DPI. Independent of TBI, PND17 rats had larger, more activated microglia than PND35 rats; PND17 TBI rats had larger cell body areas and perimeters than PND35 TBI rats. Importantly, we found support in both ages that IgG quantification predicted microglial activation after TBI. The number of microglia increased with increasing IgG, whereas branch length decreased with increasing IgG, which together indicate microglial activation. Our results suggest that stabilization of the BBB after pediatric TBI may be an important therapeutic strategy to limit neuroinflammation and promote recovery.

8.
J Endocrinol ; 260(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855319

RESUMEN

Traumatic brain injury (TBI) can damage the hypothalamus and cause improper activation of the growth hormone (GH) axis, leading to growth hormone deficiency (GHD). GHD is one of the most prevalent endocrinopathies following TBI in adults; however, the extent to which GHD affects juveniles remains understudied. We used postnatal day 17 rats (n = 83), which model the late infantile/toddler period, and assessed body weights, GH levels, and number of hypothalamic somatostatin neurons at acute (1, 7 days post injury (DPI)) and chronic (18, 25, 43 DPI) time points. We hypothesized that diffuse TBI would alter circulating GH levels because of damage to the hypothalamus, specifically somatostatin neurons. Data were analyzed with generalized linear and mixed effects models with fixed effects interactions between the injury and time. Despite similar growth rates over time with age, TBI rats weighed less than shams at 18 DPI (postnatal day 35; P = 0.03, standardized effect size [d] = 1.24), which is around the onset of puberty. Compared to shams, GH levels were lower in the TBI group during the acute period (P = 0.196; d = 12.3) but higher in the TBI group during the chronic period (P = 0.10; d = 52.1). Although not statistically significant, TBI-induced differences in GH had large standardized effect sizes, indicating biological significance. The mean number of hypothalamic somatostatin neurons (an inhibitor of GH) positively predicted GH levels in the hypothalamus but did not predict GH levels in the somatosensory cortex. Understanding TBI-induced alterations in the GH axis may identify therapeutic targets to improve the quality of life of pediatric survivors of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hormona de Crecimiento Humana , Animales , Ratas , Hormona del Crecimiento , Calidad de Vida , Somatostatina
9.
Obstet Gynecol ; 142(5): 1208-1216, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562044

RESUMEN

OBJECTIVE: To identify conditions on a reproductive carrier screening panel with the potential for carrier manifestations during pregnancy and review the implications for obstetric care. METHODS: This was a retrospective cross-sectional study of consecutive samples from female patients aged 18-55 years submitted to a commercial laboratory for a 274-gene carrier screening panel (January 2020 to September 2022). A literature review was performed to identify genes on the panel with potential for pregnancy complications in carriers. Carrier expression and published recommendations for clinical management were reviewed. RESULTS: We identified 12 genes with potential for carrier manifestations during pregnancy based on reports in the literature: nine with manifestations irrespective of the fetal genetic status ( ABCB11 , COL4A3 , COL4A4 , COL4A5 , DMD , F9 , F11 , GLA , and OTC ) and three ( CPT1A , CYP19A1 , and HADHA ) with manifestations only if the fetus is affected by the condition. Manifestations included cardiomyopathy, hemorrhage, gestational hypertensive disorders, cholestasis of pregnancy, acute fatty liver, hyperammonemic crisis, and maternal virilization. Published recommendations for carrier management were identified for 11 of the 12 genes. Of 91,637 tests performed during the study period, a pathogenic or likely pathogenic variant was identified in 2,139 (2.3%), giving a carrier frequency for any of the 12 genes of 1 in 43 (95% CI 1/41-45) 1,826 (2.0%) of the study population were identified as carriers for one of the nine genes with the potential for carrier manifestations irrespective of an affected or unaffected fetus. CONCLUSION: Approximately 1 in 40 female patients were identified as carriers for a condition with potential for maternal manifestations in pregnancy, including some serious or even life-threatening complications. Obstetric care professionals should be aware of the possibility of pregnancy complications among carriers and the available recommendations for management. FUNDING SOURCE: This study was funded by Natera, Inc.


Asunto(s)
Salud Materna , Complicaciones del Embarazo , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Estudios Transversales , Atención Prenatal , Tamización de Portadores Genéticos , Complicaciones del Embarazo/genética
10.
Neurotrauma Rep ; 4(1): 284-296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139183

RESUMEN

To investigate microglial mechanisms in central and peripheral inflammation after experimental traumatic brain injury (TBI), we inhibited the colony-stimulating factor-1 receptor (CSF-1R) with PLX5622 (PLX). We hypothesized that microglia depletion would attenuate central inflammation acutely with no effect on peripheral inflammation. After randomization, male mice (n = 105) were fed PLX or control diets (21 days) and then received midline fluid percussion injury or sham injury. Brain and blood were collected at 1, 3, or 7 days post-injury (DPI). Immune cell populations were quantified in the brain and blood by flow cytometry. Cytokines (interleukin [IL]-6, IL-1ß, tumor necrosis factor-α, interferon-γ, IL-17A, and IL-10) were quantified in the blood using a multi-plex enzyme-linked immunosorbent assay. Data were analyzed using Bayesian multi-variate, multi-level models. PLX depleted microglia at all time points and reduced neutrophils in the brain at 7 DPI. PLX also depleted CD115+ monocytes, reduced myeloid cells, neutrophils, and Ly6Clow monocytes in blood, and elevated IL-6. TBI induced a central and peripheral immune response. TBI elevated leukocytes, microglia, and macrophages in the brain and elevated peripheral myeloid cells, neutrophils, Ly6Cint monocytes, and IL-1ß in the blood. TBI lowered peripheral CD115+ and Ly6Clow monocytes in the blood. TBI PLX mice had fewer leukocytes and microglia in the brain at 1 DPI, with elevated neutrophils at 7 DPI compared to TBI mice on a control diet. TBI PLX mice also had fewer peripheral myeloid cells, CD115+, and Ly6Clow monocytes in the blood at 3 DPI, but elevated Ly6Chigh, Ly6Cint, and CD115+ monocyte populations at 7 DPI, compared to TBI mice on a control diet. TBI PLX mice had elevated proinflammatory cytokines and lower anti-inflammatory cytokines in the blood at 7 DPI compared to TBI mice on a control diet. CSF-1R inhibition reduced the immune response to TBI at 1 and 3 DPI, but elevated peripheral inflammation at 7 DPI.

11.
Biology (Basel) ; 11(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35453799

RESUMEN

The objective of this study was to determine the prevalence of sleep-wake disturbances (SWD) following pediatric traumatic brain injury (TBI), and to examine characteristics of TBI and patient demographics that might be predictive of subsequent SWD development. This single-institution retrospective study included patients diagnosed with a TBI during 2008-2019 who also had a subsequent diagnosis of an SWD. Data were collected using ICD-9/10 codes for 207 patients and included the following: age at initial TBI, gender, TBI severity, number of TBIs diagnosed prior to SWD diagnosis, type of SWD, and time from initial TBI to SWD diagnosis. Multinomial logit and negative-binomial models were fit to investigate whether the multiple types of SWD and the time to onset of SWD following TBI could be predicted by patient variables. Distributions of SWD diagnosed after TBI were similar between genders. The probability of insomnia increased with increasing patient age. The probability of 'difficulty sleeping' was highest in 7-9 year-old TBI patients. Older TBI patients had shorter time to SWD onset than younger patients. Patients with severe TBI had the shortest time to SWD onset, whereas patients with mild or moderate TBI had comparable times to SWD onset. Multiple TBI characteristics and patient demographics were predictive of a subsequent SWD diagnosis in the pediatric population. This is an important step toward increasing education among providers, parents, and patients about the risk of developing SWD following TBI.

12.
Biology (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009868

RESUMEN

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

13.
J Interpers Violence ; 37(9-10): NP6785-NP6812, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33092447

RESUMEN

Over half of fatal pediatric traumatic brain injuries are estimated to be the result of physical abuse, i.e., abusive head trauma (AHT). Although intimate partner violence (IPV) is a well-established risk for child maltreatment, little is known about IPV as an associated risk factor specifically for AHT. We performed a single-institution, retrospective review of all patients (0-17 years) diagnosed at a Level 1 pediatric trauma center with head trauma who had been referred to an in-hospital child protection team for suspicion of AHT between 2010 and 2016. Data on patient demographics, hospitalization, injury, family characteristics, sociobehavioral characteristics, physical examination, laboratory findings, imaging, discharge, and forensic determination of AHT were extracted from the institution's forensic registry. Descriptive statistics (mean, median), chi-square and Mann-Whitney U tests were used to compare patients with fatal head injuries to patients with nonfatal head injuries by clinical characteristics, family characteristics, and forensic determination. Multiple logistic regression was used to estimate adjusted odds ratios for the presence of IPV as an associated risk of AHT while controlling for other clinical and family factors. Of 804 patients with suspicion for AHT in the forensic registry, there were 240 patients with a forensic determination of AHT; 42 injuries were fatal. There were 101 families with a reported history of IPV; 64.4% of patients in families with reported IPV were <12 months of age. IPV was associated with a twofold increase in the risk of AHT (Exp(ß) = 2.3 [p = .02]). This study confirmed IPV was an associated risk factor for AHT in a single institution cohort of pediatric patients with both fatal and nonfatal injuries. Identifying IPV along with other family factors may improve detection and surveillance of AHT in medical settings and help reduce injury, disability, and death.


Asunto(s)
Maltrato a los Niños , Traumatismos Craneocerebrales , Violencia de Pareja , Niño , Traumatismos Craneocerebrales/complicaciones , Traumatismos Craneocerebrales/diagnóstico , Traumatismos Craneocerebrales/epidemiología , Humanos , Lactante , Abuso Físico , Factores de Riesgo
14.
Artículo en Inglés | MEDLINE | ID: mdl-35237767

RESUMEN

There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.

15.
Front Neurol ; 12: 804139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111130

RESUMEN

Few translational studies have examined how age-at-injury affects the glial response to traumatic brain injury (TBI). We hypothesized that rats injured at post-natal day (PND) 17 would exhibit a greater glial response, that would persist into early adulthood, compared to rats injured at PND35. PND17 and PND35 rats (n = 75) received a mild to moderate midline fluid percussion injury or sham surgery. In three cortical regions [peri-injury, primary somatosensory barrel field (S1BF), perirhinal], we investigated the glial response relative to age-at-injury (PND17 or PND35), time post-injury (2 hours, 1 day, 7 days, 25 days, or 43 days), and post-natal age, such that rats injured at PND17 or PND35 were compared at the same post-natal-age (e.g., PND17 + 25D post-injury = PND42; PND35 + 7D post-injury = PND42). We measured Iba1 positive microglia cells (area, perimeter) and quantified their activation status using skeletal analysis (branch length/cell, mean processes/cell, cell abundance). GFAP expression was examined using immunohistochemistry and pixel analysis. Data were analyzed using Bayesian multivariate multi-level models. Independent of age-at-injury, TBI activated microglia (shorter branches, fewer processes) in the S1BF and perirhinal cortex with more microglia in all regions compared to uninjured shams. TBI-induced microglial activation (shorter branches) was sustained in the S1BF into early adulthood (PND60). Overall, PND17 injured rats had more microglial activation in the perirhinal cortex than PND35 injured rats. Activation was not confounded by age-dependent cell size changes, and microglial cell body sizes were similar between PND17 and PND35 rats. There were no differences in astrocyte GFAP expression. Increased microglial activation in PND17 brain-injured rats suggests that TBI upregulates the glial response at discrete stages of development. Age-at-injury and aging with an injury are translationally important because experiencing a TBI at an early age may trigger an exaggerated glial response.

16.
J Pediatr Surg ; 56(2): 390-396, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33220974

RESUMEN

BACKGROUND: Abusive head trauma (AHT) is the leading cause traumatic death in children ≤5 years of age. AHT remains seriously under-surveilled, increasing the risk of subsequent injury and death. This study assesses the clinical and social risks associated with fatal and non-fatal AHT. METHODS: A single-institution, retrospective review of suspected AHT patients ≤5 years of age between 2010 and 2016 using a prospective hospital forensic registry data yielded demographic, clinical, family, psycho-social and other follow-up information. Descriptive statistics were used to look for differences between patients with AHT and accidental head trauma. Logistic regression estimated the adjusted odds ratios (AOR) for AHT. A receiver operating characteristic (ROC) curve was created to calculate model sensitivity and specificity. RESULTS: Forensic evaluations of 783 children age ≤5 years with head trauma met the inclusion criteria; 25 were fatal with median[IQR] age 23[4.5-39.0] months. Of 758 non-fatal patients, age was 7[3.0-11.0] months; 59.5% male; 435 patients (57.4%) presented with a skull fracture, 403 (53.2%) with intracranial hemorrhage. Ultimately 242 (31.9%) were adjudicated AHT, 335(44.2%) were accidental, 181 (23.9%) were undetermined. Clinical factors increasing the risk of AHT included multiple fractures (Exp(ß) = 9.9[p = 0.001]), bruising (Expß = 5.7[p < 0.001]), subdural blood (Exp(ß) = 5.3[p = 0.001]), seizures (Exp(ß) = 4.9[p = 0.02]), lethargy/unresponsiveness (Exp(ß) = 2.24[p = 0.02]), loss of consciousness (Exp(ß) = 4.69[p = 0.001]), and unknown mechanism of injury (Exp(ß) = 3.9[p = 0.001]); skull fracture reduced the risk of AHT by half (Exp(ß) = 0.5[p = 0.011]). Social risks factors included prior police involvement (Exp(ß) = 5.9[p = 0.001]), substance abuse (Exp(ß) = 5.7[p = .001]), unknown number of adults in the home (Exp(ß) = 4.1[p = 0.001]) and intimate partner violence (Exp(ß) = 2.3[p = 0.02]). ROC area under the curve (AUC) = 0.90([95% CI = 0.86-0.93] p = .001) provides 73% sensitivity; 91% specificity. CONCLUSIONS: To improve surveillance of AHT, interviews should include and consider social factors including caregiver/household substance abuse, intimate partner violence, prior police involvement and household size. An unknown number of adults in home is associated with an increased risk of AHT. STUDY TYPE/LEVEL OF EVIDENCE: Prognostic, Level III.


Asunto(s)
Maltrato a los Niños , Traumatismos Craneocerebrales , Niño , Maltrato a los Niños/diagnóstico , Preescolar , Traumatismos Craneocerebrales/diagnóstico , Traumatismos Craneocerebrales/epidemiología , Traumatismos Craneocerebrales/etiología , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo
17.
J Neurotrauma ; 38(20): 2862-2880, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34155930

RESUMEN

Intimate partner violence (IPV) increases risk of traumatic brain injury (TBI). Physical assaults increase in frequency and intensity during pregnancy. The consequences of TBI during pregnancy (gravida TBI; gTBI) on offspring development is unknown, for which stress and inflammation during pregnancy worsen fetal developmental outcomes. We hypothesized that gTBI would lead to increased anxiety- and depression-related behavior, altered inflammatory responses and gut pathology, and distorted brain circuitry in mixed-sex offspring compared to mice born to control mothers. Pregnant dams received either diffuse TBI or sham injury (control) 12 days post-coitum. We found that male gTBI offspring were principal drivers of the gTBI effects on health, physiology, and behavior. For example, male, but not female, gTBI offspring weighed significantly less at weaning compared to male control offspring. At post-natal day (PND) 28, gTBI offspring had significantly weaker intralaminar connectivity onto layer 5 pre-frontal pyramidal neurons compared to control offspring. Neurological performance on anxiety-like behaviors was decreased, with only marginal differences in depressive-like behaviors, for gTBI offspring compared to control offspring. At PND42 and PND58, circulating neutrophil and monocyte populations were significantly smaller in gTBI male offspring than control male offspring. In response to a subsequent inflammatory challenge at PND75, gTBI offspring had significantly smaller circulating neutrophil populations than control offspring. Anxiety-like behaviors persisted during the immune challenge in gTBI offspring. However, spleen immune response and gut histology showed no significant differences between groups. The results compel further studies to determine the full extent of gTBI on fetal and maternal outcomes.


Asunto(s)
Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/patología , Complicaciones del Embarazo/inmunología , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Ansiedad/etiología , Ansiedad/psicología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/psicología , Depresión/etiología , Depresión/psicología , Femenino , Salud , Inflamación/inmunología , Recuento de Leucocitos , Masculino , Ratones , Vías Nerviosas/patología , Embarazo , Complicaciones del Embarazo/psicología , Efectos Tardíos de la Exposición Prenatal/psicología , Células Piramidales/patología , Caracteres Sexuales , Bazo/inmunología
18.
Neurotrauma Rep ; 1(1): 113-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34223536

RESUMEN

Traumatic brain injury (TBI) survivors suffer from a range of morbidities, including post-traumatic endocrinopathies that can cause physical and mental changes in patients, greatly compromising quality of life. This study tested the hypothesis that mild and moderate diffuse TBI leads to chronic deficiencies in corticosterone (CORT) regulation following repeated exposure to restraint stress over time. Young adult male rats (n = 9-11/group) were subjected to mild or moderate TBI induced by midline fluid percussion injury (mFPI) or control sham surgery. At 6 and 24 h post-injury, both mild and moderate TBI resulted in elevated resting plasma CORT levels compared with uninjured shams. Independent of TBI severity, all rats had lower resting plasma CORT levels at 7, 14, 28, and 54 days post-injury compared with pre-surgery baseline CORT. Circulating levels of CORT were also evaluated under restraint stress and in response to dexamethasone (DEX), a synthetic glucocorticoid. Independent of TBI severity, restraint stress elevated CORT at 30, 60, and 90 min post-stressor initiation at all post-injury time-points. A blunted CORT response to restraint stress was observed with lower CORT levels after restraint at 28 and 54 days compared with 7 days post-injury (DPI), indicative of habituation to the stressor. A high dose of DEX lowered CORT levels at 90 min post-restraint stress initiation compared with low-dose DEX, independent of TBI severity. These results support TBI-induced CORT dysregulation at acute time-points, but additional studies that investigate the onset and progression of endocrinopathies, controlling for habituation to repeated restraint stress, are needed to inform the diagnosis and treatment of such morbidities in TBI survivors.

19.
Front Neurosci ; 14: 894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982677

RESUMEN

Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.

20.
Behav Brain Res ; 376: 112184, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31473282

RESUMEN

This study investigated the role of the dorsal hippocampus (dHPC) in the temporal entrainment of behavior, while addressing limitations of previous evidence from peak procedure experiments. Rats were first trained on a switch-timing task in which food was obtained from one of two concurrently available levers; one lever was effective after 8 s and the other after 16  s. After performance stabilized, rats underwent either bilateral NMDA lesions of the dHPC or sham lesions. After recovery, switch-timing training resumed. In a subsequent condition, the switch-timing task was modified such that food was available after either 8 or 32 s. Although dHPC lesions had subtle and complex effects on when rats stopped seeking for food at the 8-s lever (departures), it more systematically reduced the time when rats started seeking for food at the 16-s and 32-s lever (switches). No systematic effect of dHPC lesions were observed on the coefficient of quartile variation (normalized dispersion) of latencies to switch. Within the context of the pacemaker-accumulator framework of interval timing, these findings suggest that partially or wholly independent mechanisms control the initiation and termination of timed responses, and that the dHPC is primarily involved in encoding the time to start responding.


Asunto(s)
Condicionamiento Operante/fisiología , Hipocampo/fisiología , Tiempo de Reacción/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Percepción del Tiempo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA