Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biomacromolecules ; 24(5): 2052-2062, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37040473

RESUMEN

Rice straw cellulose nanofibrils from the optimal 2,2,6,6-tetramethylpiperidine-1-oxyl oxidation/blending process carrying 1.17 mmol/g surface carboxyls were protonated to varying charged (COO-Na+) and uncharged (COOH) surfaces. Reducing the electrostatic repulsion of surface charges by protonation with hydrochloric acid from 11 to 45 and 100% surface carboxylic acid most prominently reduced the aerogel densities from 8.0 to 6.6 and 5.2 mg/cm3 while increasing the mostly open cell pore volumes from 125 to 152 and 196 mL/g. Irrespective of charge levels, all aerogels were amphiphilic, super-absorptive, stable at pH 2 for up to 30 days, and resilient for up to 10 repetitive squeezing-absorption cycles. While these aerogels exhibited density-dependent dry [11.3 to 1.5 kPa/(mg/cm3)] and reduced wet [3.3 to 1.4 kPa/(mg/cm3)] moduli, the absorption of organic liquids stiffened the saturated aerogels. These data support protonation as a critical yet simple approach toward precise control of aerogels' dry and wet properties.


Asunto(s)
Celulosa , Oryza , Celulosa/química , Geles/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
Environ Sci Technol ; 57(13): 5216-5230, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961979

RESUMEN

The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.


Asunto(s)
Benzoquinonas , Fenilendiaminas , Goma , Contaminantes Químicos del Agua , Purificación del Agua , Transporte de Electrón , Ozono/química , Goma/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Fenilendiaminas/química , Benzoquinonas/química , Cinética
3.
Compr Rev Food Sci Food Saf ; 20(3): 2596-2625, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682364

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have been used in food contact paper and paperboard for decades due to their unique ability to provide both moisture and oil/grease resistance. Once thought to be innocuous, it is now clear that long chain PFAS bioaccumulate and are linked to reproductive and developmental abnormalities, suppressed immune response, and tumor formation. Second-generation PFAS have shorter biological half-lives but concerns about health risks from chronic exposure underscore the need for safe substitutes. Waxes and polymer film laminates of polyethylene, poly(ethylene-co-vinyl alcohol), and polyethylene terephthalate are commonly used alternatives. However, such laminates are neither compostable nor recyclable. Lamination with biodegradable polymers, including polyesters, such as polylactic acid (PLA), polybutylene adipate terephthalate, polybutylene succinate, and polyhydroxyalkanoates, are of growing research and commercial interest. PLA films are perhaps the most viable alternative, but performance and compostability are suboptimal. Surface sizings and coatings of starches, chitosan, alginates, micro- and nanofibrilated cellulose, and gelatins provide adequate oil barrier properties but have poor moisture resistance without chemical modification. Plant proteins, including soy, wheat gluten, and corn zein, have been tested as paper coatings with soy being the most commercially important. Internal sizing agents, such as alkyl ketene dimers, alkenyl succinic anhydride, and rosin, improve moisture resistance but are poor oil/grease barriers. The difficulty in finding a viable replacement for PFAS chemicals that is cost-effective, fully biodegradable, and environmentally sound underscores the need for more research to improve barrier properties and process economics in food packaging products.


Asunto(s)
Quitosano , Polihidroxialcanoatos , Celulosa , Embalaje de Alimentos , Polietileno
4.
J Sci Food Agric ; 99(14): 6267-6277, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31259414

RESUMEN

BACKGROUND: 2-Heptanone is a volatile liquid known to be effective in protecting honey bees from parasitic mite infestations in hives. The present study aimed to show that chemical derivatives of 2-heptanone would release the ketone for a significantly longer time than it takes for the pure ketone to evaporate and preferably for as long as two brood cycles of a honey bee (42 days). RESULTS: A liquid ketal of 2-heptanone with glycerol (Glyc-Ket) and solid ketals of the ketone with polyvinyl alcohol (PVAl-Ket), containing different amounts of the ketone, were synthesized. The fully resolved 1 H and 13 C nuclear magenetic resonance (NMR) spectra of the ketals are discussed. In the case of the polymer, differential scanning calorimetry (DSC) of a ketal was also compared with the unketalized polyvinyl alcohol. The length of time for which 2-heptanone was released by the ketals was determined by gas chromatography-mass spectrometry of the headspace. In the case of Glyc-Ket, the concentration of the 2-heptanone in the liquid phase was also monitored by 1 H NMR spectroscopy. The deketalization was pH dependent, ranging between 2.0 and 2.5 for Glyc-Ket and between 2.0 and 3.5 for PVAl-Ket. CONCLUSION: Under bee hive conditions, the release of 55 mmol 2-heptanone from Glyc-Ket lasted for 42 days, whereas the release of the ketone from the PVAl-Ket with a similar amount of the ketone lasted for 23 days, versus a maximum of 17 days for an equivalent amount of the pure ketone. These ketals therefore have the potential to be effective mite repellants for the protection of honey bees. © 2019 Society of Chemical Industry.


Asunto(s)
Abejas/fisiología , Repelentes de Insectos/farmacología , Cetonas/farmacología , Ácaros/efectos de los fármacos , Animales , Ácaros/crecimiento & desarrollo
5.
Waste Manag Res ; 34(5): 457-64, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26987737

RESUMEN

A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1).


Asunto(s)
Eliminación de Residuos/instrumentación , Eliminación de Residuos/métodos , Diseño de Equipo , Proyectos Piloto , Reciclaje , Residuos Sólidos/análisis , Vapor , Agua
6.
J Nanosci Nanotechnol ; 15(1): 616-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328414

RESUMEN

The present study reports on the development of hybrid poly(lactic acid) (PLA) fibres loaded with highly crystalline bacterial cellulose nanowhiskers (BCNW) by the novel solution blow spinning method. Furthermore, fibres with antimicrobial properties were generated by incorporating carvacrol and THC as antimicrobial agents and the biocide effect against Listeria monocytogenes was studied. Initially, PLA blow spun fibres containing BCNW were optimized in terms of morphology and thermal properties. The addition of BCNW was seen to significantly increase the viscosity and surface tension of solutions, restricting the capacity to form fibres for concentrations greater than 30 wt.-% BCNW. 15 wt.-% BCNW was selected as the optimum nanofiller loading as it led to the most uniform fibres morphology, with BCNW homogeneously distributed along the fibres' axis. Subsequently, carvacrol and THC were incorporated into the fibres to confer them with antimicrobial properties, although the hydrophobic PLA matrix did not provide an efficient release of the antimicrobials. Thus, hydrophilic substances were added in order to trigger the antimicrobials release through water sorption mechanisms. The addition of the BCNW filler was not seen to significantly increase the antimicrobial capacity of the fibres by itself and, hence, gelatin was added to help promoting further the hydrophylicity and biocide performance of the fibres. Nevertheless, for the more hydrophilic THC, the biocide capacity of the fibres with gelatin was accentuated further by the presence of the BCNW.


Asunto(s)
Antiinfecciosos/química , Ácido Láctico/química , Nanofibras/química , Nanotecnología/métodos , Polímeros/química , Antiinfecciosos/farmacología , Rastreo Diferencial de Calorimetría , Celulosa/química , Celulosa/metabolismo , Cimenos , Gluconacetobacter xylinus/química , Gluconacetobacter xylinus/metabolismo , Listeria monocytogenes/efectos de los fármacos , Monoterpenos/química , Monoterpenos/farmacología , Poliésteres , Viscosidad
7.
ACS Omega ; 9(16): 17869-17877, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680319

RESUMEN

Preservatives, such as isothiazolinones and formaldehyde-releasing compounds, provide safety and stability in consumer products by preventing microbial contamination. Yet these ingredients present human and environmental hazards, including allergic contact dermatitis and aquatic toxicity. The development of safer alternatives has been stymied by trade-offs between safety and efficacy. To enable the identification of safer preservatives, substances from eight functional classes were assessed for antimicrobial efficacy and human and environmental hazards. First, 130 substances were evaluated for microbial inhibitory activity against two relevant model microorganisms, Aspergillus brasiliensis (filamentous fungi) and Pseudomonas aeruginosa (Gram-negative bacteria). High-performing compounds within each class were assessed for hazards across a broad suite of human and environmental health end points. Four promising compounds were selected for further testing based on microbial inhibition, hazard profiles, and commercial availability. These ingredients were tested for biocidal activity in model home care formulations using methods adapted from industrial preservative challenge guidelines (USP-51). Two substances were identified, caprylhydroxamic acid and caprylyl glycol, that provided adequate preservation and improved toxicity profiles compared to isothiazolinone and formaldehyde-releasing preservatives. This study highlights trade-offs between antimicrobial activity and hazards across a broad spectrum of chemical classes relevant to safer preservative development.

8.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611169

RESUMEN

Single-use plastic foams are used extensively as interior packaging to insulate and protect items during shipment but have come under increasing scrutiny due to the volume sent to landfills and their negative impact on the environment. Insulative compression molded cellulose fiber foams could be a viable alternative, but they do not have the mechanical strength of plastic foams. To address this issue, a novel approach was used that combined the insulative properties of cellulose fiber foams, a binder (starch), and three different reinforcing paperboard elements (angular, cylindrical, and grid) to make low-density foam composites with excellent mechanical strength. Compression molded foams and composites had a consistent thickness and a smooth, flat finish. Respirometry tests showed the fiber foams mineralized in the range of 37 to 49% over a 46 d testing period. All of the samples had relatively low density (Dd) and thermal conductivity (TC). The Dd of samples ranged from 33.1 to 64.9 kg/m3, and TC ranged from 0.039 to 0.049 W/mk. The addition of starch to the fiber foam (FF+S) and composites not only increased Dd, drying time (Td), and TC by an average of 18%, 55%, and 5.5%, respectively, but also dramatically increased the mechanical strength. The FF+S foam and paperboard composites had 240% and 350% higher average flexural strength (σfM) and modulus (Ef), respectively, than the FF-S composites. The FF-S grid composite and all the FF+S foam and composite samples had equal or higher σfM than EPS foam. Additionally, FF+S foam and paperboard composites had 187% and 354% higher average compression strength (CS) and modulus (Ec), respectively, than the FF-S foam and composites. All the paperboard composites for both FF+S and FF-S samples had comparable or higher CS, but only the FF+S cylinder and grid samples had greater toughness (Ωc) than EPS foam. Fiber foams and foam composites are compatible with existing paper recycling streams and show promise as a biodegradable, insulative alternative to EPS foam internal packaging.

9.
ScientificWorldJournal ; 2013: 396156, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24453843

RESUMEN

A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated that the enzyme had optimal activity under alkaline conditions (pH 8-10). In addition, the enzyme had an elevated optimum temperature (60°C). The protease was also stable in the presence of many surfactants and oxidant. Thus, the C. proteolyticus protease has potential applications in industries such as the detergent market.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias Anaerobias Gramnegativas/enzimología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Bacillus subtilis , Clonación Molecular , Biología Computacional , Escherichia coli , Vectores Genéticos/genética , Concentración de Iones de Hidrógeno , Temperatura
10.
PLoS One ; 18(7): e0284377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471433

RESUMEN

Many studies have been conducted to produce microbial polyhydroxyalkanoates (PHA), a biopolymer, from Pseudomonas sp. fed with various alkanoic acids. Because this previous data was collected using methodologies that varied in critical aspects, such as culture media and size range of alkanoic acids, it has been difficult to compare the results for a thorough understanding of the relationship between feedstock and PHA production. Therefore, this study utilized consistent culture media with a wide range of alkanoic acids (C7-C14) to produce medium chain length PHAs. Three strains of Pseudomonas putida (NRRL B-14875, KT2440, and GN112) were used, and growth, cell dry weight, PHA titer, monomer distribution, and molecular weights were all examined. It was determined that although all the strains produced similar PHA titers using C7-C9 alkanoic acids, significant differences were observed with the use of longer chain feedstocks. Specifically, KT2440 and its derivative GN112 produced higher PHA titers compared to B-14875 when fed longer chain alkanoates. We also compared several analytical techniques for determining amounts of PHA and found they produced different results. In addition, the use of an internal standard had a higher risk of calculating inaccurate concentrations compared to an external standard. These observations highlight the importance of considering this aspect of analysis when evaluating different studies.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas putida , Ácidos Grasos , Medios de Cultivo
11.
Front Fungal Biol ; 4: 1172893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746121

RESUMEN

Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further in vitro antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic Aspergillus flavus contaminating crop seeds (Brassica rapa Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (Escherichia coli, Agrobacterium tumefaciens). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.

12.
Methods Protoc ; 7(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38392682

RESUMEN

The United States is a principal producer of tree nuts (almonds, pistachios, and walnuts), resulting in the generation of excess of tree-nutshell by-products each year, with few market outlets. A nutshell is an essential, lignocellulosic layer that protects a kernel (seed) from the environment during cultivation. The objective of this study was to develop nutshell by-products as herbicide delivery systems, which would not only enable sustainable weed control in fields but also increases nutshell value and reduce the cost of waste disposal. We recently identified a natural salicylaldehyde (SA) that emits volatiles with both herbicidal and antifungal properties. In this study, walnut shell particles saturated with 0.8 to 1.6 M SA were developed as delivery vehicles for SA to soil, which allowed for the controlled release of an SA fumigant for weed control. The pre- and post-emergent herbicidal efficacy of SA was investigated using model monocot (Lolium arundinaceum (Schreb.) Darbysh; turfgrass) and dicot (Brassica rapa var. pekinensis; Chinese cabbage) plants. We compared (1) the effects of different types of solvents for dissolving SA (dimethyl sulfoxide (DMSO) and ethanol (60%, v/v)), and (2) the effect of covering soil with plastic layers (i.e., soil pasteurization) or not covering soil during SA fumigation using nutshells. Results: In the pre-emergent herbicidal testing with the soil covered, the dicot plants exhibited levels of higher susceptibility to SA in DMSO emitted from nutshells when compared to the monocot plants. The seed germination frequencies in the dicots were 15% and 1% with 0.8 and 1.6 M SA, respectively, while those in the monocots were 32% and 18%, respectively, under the same test conditions. In the post-emergent herbicidal testing with the soil covered, the growth of both the monocot and dicot plants was completely prevented after 5 to 7 days of SA fumigation, resulting in the deaths of entire plants. It was noteworthy that in the post-emergent herbicidal testing, SA dissolved in ethanol (60%, v/v) completely disrupted the growth of the monocot and dicot plants as early as 3 days after SA emission from the nutshells, even without the soil being covered. Tree-nutshell particles could serve as effective SA delivery vehicles with controlled release capabilities for SA. The SA exhibited pre- and post-emergent herbicidal activities against the monocot and dicot plants at most growth stages. SA (0.8 and 1.6 M) dissolved in ethanol (60%, v/v) might exert a synergism for higher herbicidal activity after emission from nutshells. Since tree nuts capture/store a substantial amount of carbon over their life-cycles, the new and sustainable utility of using nutshells not only reduces carbon emissions but also valorizes tree-nut by-products, thus benefitting the tree-nut industry.

13.
J Ind Microbiol Biotechnol ; 39(8): 1245-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22526332

RESUMEN

Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45 °C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7-8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.


Asunto(s)
Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Microbiología del Suelo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Endo-1,4-beta Xilanasas/metabolismo , Escherichia coli , Ácido Glucurónico/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Datos de Secuencia Molecular , Polisacáridos/metabolismo , Temperatura , Xilanos/metabolismo
14.
Polymers (Basel) ; 14(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146029

RESUMEN

Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetric analysis, differential scanning calorimetry, FTIR analysis, CHNSO analysis, and mechanical testing. Heat distortion temperature of the RRH composites were 16-22 °C higher than TRH composites. The RRH composite samples showed a 50-60% increase in flexural modulus and 5% increase in stress at yield compared to PHB, while TRH composite samples showed nearly equal flexural modulus and a 24% decrease in stress at yield. The improved mechanical properties of the RRH composites in comparison to TRH composites were due to better particle-matrix adhesion. FTIR analysis showed RRH particles contained more surface functional groups containing oxygen than TRH particles, indicating that RRHs should be more compatible with the polar PHB plastic. SEM images showed space between filler and plastic in TRH composites and better wetted filler particles in the RRH composites.

15.
Toxins (Basel) ; 14(11)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356001

RESUMEN

Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum and reversible antibiotic (guanylhydrazone disinfectant) was evaluated for its antibiotic activity and effects on Stx production and global transcription of bacteria. No Stx induction was observed in 25 Shiga toxin-producing E. coli (STEC) isolates treated with a sublethal concentration of the guanylhydrazone. A differential gene expression study comparing two guanylhydrazone-treated to non-treated E. coli strains indicated that the expression of a group of stress-responsive genes were enhanced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that guanylhydrazone treatment significantly downregulated the pathways of ribosome and flagellar assembly in both pathogenic and non-pathogenic strains and differentially regulated some pathways essential for bacteria to maintain cell shape and gain survival advantage in two strains. In addition, upregulation of antibiotic resistant genes related to the multidrug efflux system and virulence genes coding for colibactin, colicin, and adhesin was observed in strains treated with the disinfectant. The knowledge obtained in this study contributes to our understanding of the mode of this disinfectant action and facilitates our effort to better use disinfectants for STEC treatments.


Asunto(s)
Desinfectantes , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Desinfectantes/farmacología , Proteínas de Escherichia coli/genética , Factores de Virulencia/genética , Infecciones por Escherichia coli/microbiología , Toxina Shiga/genética , Antibacterianos/farmacología
16.
Int J Biol Macromol ; 168: 86-92, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33290766

RESUMEN

Despite being used as a common platform for the commercial production of many biochemicals, Bacilli are often overlooked as a source of industrial polyhydroxyalkanoates (PHAs), biodegradable plastic replacements. In addition to having a robust expression system, the lack of lipopolysaccharides and ease of lysis make Bacilli an attractive host for the production of PHAs. In this work, a Bacillus megaterium strain was engineered to generate poly(3-hydroxybutyrate-co-4-hydroxybutryate) (P[3HB-co-4HB]) copolymers, which are among the most useful and industrially-relevant copolymers. These copolymers had lower modulus and increased toughness, thus making the copolymer suitable for a broader range of applications. Due to high metabolic flux through succinate, the engineered B. megaterium strain produced P(3HB-co-4HB) with >10% mol fraction 4HB from glucose, without the use of highly regulated and expensive precursors or potentially damaging truncation of central biochemical pathways.


Asunto(s)
Hidroxibutiratos/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico/química , Bacillus megaterium/metabolismo , Cupriavidus/metabolismo , Hidroxibutiratos/síntesis química , Polímeros/química , Ácido Succínico/metabolismo , Xilosa/química , Xilosa/metabolismo
17.
Carbohydr Polym ; 252: 117165, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33183616

RESUMEN

Commercializing dried microfibrillated cellulose (MFC) has always been a challenge mainly due to the tendency of MFC to aggregate. In this study MFC samples were submitted to drying/redispersion cycles at different temperatures. Morphology, crystallinity and mechanical performance of films were analyzed throughout the cycles. Microscopy images, particle size and stability in water showed that aggregation happens more severely with 5 drying/redispersion cycles and at drying temperatures of 75 and 100 °C. Particles once-dried at 20 °C formed the same size and web-like structure as the MFC-control. Crystallinity and crystallite sizes increased with drying/redispersion cycles especially when dried at 75 and 100 °C, however drying/redispersion cycles also led to a reduction in mechanical performance due to aggregation. While oven-drying is not the most suitable method, milder action at room temperature once-drying led to suspension stability in water, morphology and mechanical properties close to never-dried MFC, which makes this treatment a feasible option to maintain cellulose quality.

18.
Carbohydr Polym ; 207: 100-107, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599989

RESUMEN

The objective of this work was to prepare bio-based thin films and evaluate the additions of magnetite and glycerol on the physico-chemical (flexibility, wettability and barrier properties) and dielectric properties of cellulose/chitosan-based films. The films were prepared by solution casting and presented a suitable dispersion of the constituents observed by SEM and FTIR. The films were thermally stable up to 150 °C and had a higher flexibility, wettability and lower barrier properties upon addition of glycerol. The calculated dielectric constant (εr) for the composite films was based on measurements of capacitance, at 100 and 1000 Hz, with the additions of magnetite and glycerol more than doubling the εr increasing the charge storage capacity. The bio-based thin films have potential to be used as insulators in capacitors on the production of green electronics thus, reducing toxic and nonrenewable e-waste generation.


Asunto(s)
Celulosa/química , Óxido Ferrosoférrico/química , Nanofibras/química , Quitosano/química , Módulo de Elasticidad , Capacidad Eléctrica , Glicerol/química , Tecnología Química Verde/instrumentación , Fenómenos Magnéticos , Resistencia a la Tracción , Humectabilidad
19.
Polymers (Basel) ; 11(8)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370362

RESUMEN

This paper provides proof of concept that activated carbon (AC) may be readily produced using limited conversion methods and resources from sawdust of massaranduba (Manilkara huberi) wood, thereby obtaining value-added products. Sawdust was sieved and heat-treated in an oxygen-free muffle furnace at 500 °C to produce charcoal. The charcoal was activated in a tubular electric furnace at 850 °C while being purged with CO2 gas. Microstructural, thermal and physical properties of the three components: sawdust, charcoal and AC were compared by means of field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), density and water adsorption/desorption measurements. The resulting AC had a large surface area as measured by Brunauer-Emmett-Teller (BET) comparable to other such values found in the literature. The large surface area was due to pore development at the microstructural level as shown by FESEM. XRD illustrated that sawdust had a semi-crystalline structure whereas charcoal and AC evidenced mostly amorphous structures. TGA and DSC showed that AC had high reactivity to moisture compared to sawdust and charcoal.

20.
J Agric Food Chem ; 56(11): 3892-9, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18473470

RESUMEN

Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. Applications include feedstock characterization and quantification of structural changes resulting from genetic modification and of the intermediates formed during enzymatic and chemical processing; development of improved processes for utilizing chemical coproducts such as lactic acid and glycerol; development of alternative biofuels such as methanol, butanol, and hydrogen; and ways to reduce greenhouse gas emission and/or use carbon dioxide beneficially. Chemists will also be heavily involved in detailing the phytochemical composition of alternative energy crops and genetically improved crops. A resurgence of demand for agricultural chemistry and related disciplines argues for increasing output through targeted programs and on-the-job training.


Asunto(s)
Química Agrícola , Fuentes Generadoras de Energía , Pared Celular/química , Celulosa , Técnicas de Química Analítica , Química Agrícola/tendencias , Efecto Invernadero , Plantas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA