Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Biol ; 20(5)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37489881

RESUMEN

Cell-to-cell variability in protein concentrations is strongly affected by extrinsic noise, especially for highly expressed genes. Extrinsic noise can be due to fluctuations of several possible cellular factors connected to cell physiology and to the level of key enzymes in the expression process. However, how to identify the predominant sources of extrinsic noise in a biological system is still an open question. This work considers a general stochastic model of gene expression with extrinsic noise represented as fluctuations of the different model rates, and focuses on the out-of-equilibrium expression dynamics. Combining analytical calculations with stochastic simulations, we characterize how extrinsic noise shapes the protein variability during gene activation or inactivation, depending on the prevailing source of extrinsic variability, on its intensity and timescale. In particular, we show that qualitatively different noise profiles can be identified depending on which are the fluctuating parameters. This indicates an experimentally accessible way to pinpoint the dominant sources of extrinsic noise using time-coarse experiments.


Asunto(s)
Fenómenos Fisiológicos Celulares , Proteínas , Expresión Génica , Procesos Estocásticos , Modelos Biológicos
2.
PLoS Comput Biol ; 18(5): e1010059, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500024

RESUMEN

Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such "growth laws" neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences. We propose a simple framework showing that at slow growth protein degradation is balanced by a fraction of "maintenance" ribosomes. Consequently, active ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an increasing fraction of active ribosomes performs maintenance. Through a detailed analysis of compiled data, we show that the predictions of this model agree with data from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation increases at slow growth, which we interpret as a consequence of active waste management and/or recycling. Our results highlight protein turnover as an underrated factor for our understanding of growth laws across kingdoms.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteolisis , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
PLoS Comput Biol ; 17(12): e1009638, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871317

RESUMEN

This work studies the effects of the two rounds of Whole Genome Duplication (WGD) at the origin of the vertebrate lineage on the architecture of the human gene regulatory networks. We integrate information on transcriptional regulation, miRNA regulation, and protein-protein interactions to comparatively analyse the role of WGD and Small Scale Duplications (SSD) in the structural properties of the resulting multilayer network. We show that complex network motifs, such as combinations of feed-forward loops and bifan arrays, deriving from WGD events are specifically enriched in the network. Pairs of WGD-derived proteins display a strong tendency to interact both with each other and with common partners and WGD-derived transcription factors play a prominent role in the retention of a strong regulatory redundancy. Combinatorial regulation and synergy between different regulatory layers are in general enhanced by duplication events, but the two types of duplications contribute in different ways. Overall, our findings suggest that the two WGD events played a substantial role in increasing the multi-layer complexity of the vertebrate regulatory network by enhancing its combinatorial organization, with potential consequences on its overall robustness and ability to perform high-level functions like signal integration and noise control. Lastly, we discuss in detail the RAR/RXR pathway as an illustrative example of the evolutionary impact of WGD duplications in human.


Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Animales , Genómica , Humanos , Modelos Genéticos , Vertebrados/genética
4.
Nucleic Acids Res ; 45(3): 1069-1078, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180313

RESUMEN

Timing is essential for many cellular processes, from cellular responses to external stimuli to the cell cycle and circadian clocks. Many of these processes are based on gene expression. For example, an activated gene may be required to reach in a precise time a threshold level of expression that triggers a specific downstream process. However, gene expression is subject to stochastic fluctuations, naturally inducing an uncertainty in this threshold-crossing time with potential consequences on biological functions and phenotypes. Here, we consider such 'timing fluctuations' and we ask how they can be controlled. Our analytical estimates and simulations show that, for an induced gene, timing variability is minimal if the threshold level of expression is approximately half of the steady-state level. Timing fluctuations can be reduced by increasing the transcription rate, while they are insensitive to the translation rate. In presence of self-regulatory strategies, we show that self-repression reduces timing noise for threshold levels that have to be reached quickly, while self-activation is optimal at long times. These results lay a framework for understanding stochasticity of endogenous systems such as the cell cycle, as well as for the design of synthetic trigger circuits.


Asunto(s)
Regulación de la Expresión Génica , Ciclo Celular , Relojes Circadianos , Simulación por Computador , Redes Reguladoras de Genes , Homeostasis , Modelos Genéticos , Procesos Estocásticos , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 111(9): 3431-5, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550446

RESUMEN

The coordination of cell growth and division is a long-standing problem in biology. Focusing on Escherichia coli in steady growth, we quantify cell division control using a stochastic model, by inferring the division rate as a function of the observable parameters from large empirical datasets of dividing cells. We find that (i) cells have mechanisms to control their size, (ii) size control is effected by changes in the doubling time, rather than in the single-cell elongation rate, (iii) the division rate increases steeply with cell size for small cells, and saturates for larger cells. Importantly, (iv) the current size is not the only variable controlling cell division, but the time spent in the cell cycle appears to play a role, and (v) common tests of cell size control may fail when such concerted control is in place. Our analysis illustrates the mechanisms of cell division control in E. coli. The phenomenological framework presented is sufficiently general to be widely applicable and opens the way for rigorous tests of molecular cell-cycle models.


Asunto(s)
División Celular/fisiología , Escherichia coli/citología , Modelos Biológicos , Escherichia coli/fisiología , Técnicas Analíticas Microfluídicas , Factores de Tiempo
6.
J Theor Biol ; 365: 23-31, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25308509

RESUMEN

The adaptive evolution of large asexual populations is generally characterized by competition between clones carrying different beneficial mutations. Interference slows down the adaptation speed and makes the theoretical description of the dynamics more complex with respect to the successional occurrence and fixation of beneficial mutations typical of small populations. A simplified modeling framework considering multiple beneficial mutations with equal and constant fitness advantage is known to capture some of the essential features of laboratory evolution experiments. However, in these experiments the relative advantage of a beneficial mutation is generally dependent on the genetic background. In particular, the general pattern is that, as mutations in different loci accumulate, the relative advantage of new mutations decreases, a trend often referred to as "diminishing return" epistasis. Here, we propose a phenomenological model that generalizes the fixed-advantage framework to include this negative epistasis in a simple way. We evaluate analytically as well as with direct simulations the quantitative consequences of diminishing returns on the evolutionary dynamics. The speed of adaptation decreases in time and reaches a limit value corresponding to neutral evolution in the long time limit. This corresponds to an increase of the diversity in terms of "classes of mutation" in the population. Finally, we show how the model can be compared with dynamic data on fitness and number of beneficial mutations from laboratory evolution experiments.


Asunto(s)
Epistasis Genética/fisiología , Evolución Molecular , Genética de Población , Modelos Genéticos , Mutación
7.
Bioinformatics ; 28(12): 1643-4, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22531214

RESUMEN

UNLABELLED: Different experimental results suggest the presence of an interplay between global transcriptional regulation and chromosome spatial organization in bacteria. The identification and clear visualization of spatial clusters of contiguous genes targeted by specific DNA-binding proteins or sensitive to nucleoid perturbations can elucidate links between nucleoid structure and gene expression patterns. Similarly, statistical analysis to assess correlations between results from independent experiments can provide the integrated analysis needed in this line of research. NuST (Nucleoid Survey tools), based on the Escherichia coli genome, gives the non-expert the possibility to analyze the aggregation of genes or loci sets along the genome coordinate, at different scales of observation. It is useful to discover correlations between different sources of data (e.g. expression, binding or genomic data) and genome organization. A user can use it on datasets in the form of gene lists coming from his/her own experiments or bioinformatic analyses, but also make use of the internal database, which collects data from many published studies. AVAILABILITY AND IMPLEMENTATION: NuST is a web server (available at http://www.lgm.upmc.fr/nust/). The website is implemented in PHP, SQLite and Ajax, with all major browsers supported, while the core algorithms are optimized and implemented in C. NuST has an extensive help page and provides a direct visualization of results as well as different downloadable file formats. A template Perl code for automated access to the web server can be downloaded at http://www.lgm.upmc.fr/nust/downloads/, in order to allow the users to use NuST in systematic bioinformatic analyses.


Asunto(s)
Cromosomas Bacterianos/genética , Biología Computacional/métodos , Escherichia coli/genética , Expresión Génica , Algoritmos , Bases de Datos Genéticas , Genoma Bacteriano , Internet , Interfaz Usuario-Computador
8.
Phys Rev E ; 107(4-1): 044403, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198814

RESUMEN

Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Genómica/métodos , Ecosistema , Ecología
9.
PLoS Comput Biol ; 7(3): e1001101, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423718

RESUMEN

MicroRNAs are endogenous non-coding RNAs which negatively regulate the expression of protein-coding genes in plants and animals. They are known to play an important role in several biological processes and, together with transcription factors, form a complex and highly interconnected regulatory network. Looking at the structure of this network, it is possible to recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions. Among them, a special role is played by the microRNA-mediated feedforward loop in which a master transcription factor regulates a microRNA and, together with it, a set of target genes. In this paper we show analytically and through simulations that the incoherent version of this motif can couple the fine-tuning of a target protein level with an efficient noise control, thus conferring precision and stability to the overall gene expression program, especially in the presence of fluctuations in upstream regulators. Among the other results, a nontrivial prediction of our model is that the optimal attenuation of fluctuations coincides with a modest repression of the target expression. This feature is coherent with the expected fine-tuning function and in agreement with experimental observations of the actual impact of a wide class of microRNAs on the protein output of their targets. Finally, we describe the impact on noise-buffering efficiency of the cross-talk between microRNA targets that can naturally arise if the microRNA-mediated circuit is not considered as isolated, but embedded in a larger network of regulations.


Asunto(s)
Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Expresión Génica , MicroARNs/genética , Factores de Transcripción/genética
10.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267458

RESUMEN

The integration of transcriptional data with other layers of information, such as the post-transcriptional regulation mediated by microRNAs, can be crucial to identify the driver genes and the subtypes of complex and heterogeneous diseases such as cancer. This paper presents an approach based on topic modeling to accomplish this integration task. More specifically, we show how an algorithm based on a hierarchical version of stochastic block modeling can be naturally extended to integrate any combination of 'omics data. We test this approach on breast cancer samples from the TCGA database, integrating data on messenger RNA, microRNAs, and copy number variations. We show that the inclusion of the microRNA layer significantly improves the accuracy of subtype classification. Moreover, some of the hidden structures or "topics" that the algorithm extracts actually correspond to genes and microRNAs involved in breast cancer development and are associated to the survival probability.

11.
Cell Rep ; 38(12): 110547, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320714

RESUMEN

The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.


Asunto(s)
Receptores Odorantes , Olfato , Animales , Lógica , Ratones , Odorantes/análisis , Receptores Odorantes/genética , Olfato/genética , Transcriptoma/genética
12.
Front Cell Dev Biol ; 9: 720623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888305

RESUMEN

In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1 null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.

13.
Sci Rep ; 11(1): 6101, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731745

RESUMEN

Individual cells exhibit specific proliferative responses to changes in microenvironmental conditions. Whether such potential is constrained by the cell density throughout the growth process is however unclear. Here, we identify a theoretical framework that captures how the information encoded in the initial density of cancer cell populations impacts their growth profile. By following the growth of hundreds of populations of cancer cells, we found that the time they need to adapt to the environment decreases as the initial cell density increases. Moreover, the population growth rate shows a maximum at intermediate initial densities. With the support of a mathematical model, we show that the observed interdependence of adaptation time and growth rate is significantly at odds both with standard logistic growth models and with the Monod-like function that governs the dependence of the growth rate on nutrient levels. Our results (i) uncover and quantify a previously unnoticed heterogeneity in the growth dynamics of cancer cell populations; (ii) unveil how population growth may be affected by single-cell adaptation times; (iii) contribute to our understanding of the clinically-observed dependence of the primary and metastatic tumor take rates on the initial density of implanted cancer cells.


Asunto(s)
Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología , Humanos , Células Jurkat , Metástasis de la Neoplasia
14.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339347

RESUMEN

Topic modeling is a widely used technique to extract relevant information from large arrays of data. The problem of finding a topic structure in a dataset was recently recognized to be analogous to the community detection problem in network theory. Leveraging on this analogy, a new class of topic modeling strategies has been introduced to overcome some of the limitations of classical methods. This paper applies these recent ideas to TCGA transcriptomic data on breast and lung cancer. The established cancer subtype organization is well reconstructed in the inferred latent topic structure. Moreover, we identify specific topics that are enriched in genes known to play a role in the corresponding disease and are strongly related to the survival probability of patients. Finally, we show that a simple neural network classifier operating in the low dimensional topic space is able to predict with high accuracy the cancer subtype of a test expression sample.

15.
Genome Biol Evol ; 12(11): 2045-2059, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32986810

RESUMEN

Retrotransposons, DNA sequences capable of creating copies of themselves, compose about half of the human genome and played a central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time. The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions. Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective mechanisms can have contributed. Besides the inherent interest in understanding the origin of current retrotransposon distributions, this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distribution of genomic elements.


Asunto(s)
Elementos Alu , Evolución Biológica , Genoma Humano , Elementos de Nucleótido Esparcido Largo , Modelos Genéticos , Humanos , Mutación
16.
Phys Biol ; 6(4): 046018, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19934491

RESUMEN

It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model.


Asunto(s)
Entropía , Eucariontes/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Eucariontes/genética , Modelos Biológicos , ARN Mensajero/genética
17.
Epigenomics ; 11(14): 1581-1599, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31693439

RESUMEN

Aim: Growing evidence shows a strong interplay between post-transcriptional regulation, mediated by miRNAs (miRs) and epigenetic regulation. Nevertheless, the number of experimentally validated miRs (called epi-miRs) involved in these regulatory circuitries is still very small. Material & methods: We propose a pipeline to prioritize candidate epi-miRs and to identify potential epigenetic interactors of any given miR starting from miR transfection experiment datasets. Results & conclusion: We identified 34 candidate epi-miRs: 19 of them are known epi-miRs, while 15 are new. Moreover, using an in-house generated gene expression dataset, we experimentally proved that a component of the polycomb-repressive complex 2, the histone methyltransferase enhancer of zeste homolog 2 (EZH2), interacts with miR-214, a well-known prometastatic miR in melanoma and breast cancer, highlighting a miR-214-EZH2 regulatory axis potentially relevant in tumor progression.


Asunto(s)
Epigénesis Genética/genética , MicroARNs/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Melanoma/genética , Complejo Represivo Polycomb 2/genética , Transfección/métodos
18.
Sci Adv ; 4(11): eaau3324, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30417095

RESUMEN

A cell can divide only upon completion of chromosome segregation; otherwise, its daughters would lose genetic material. However, we do not know whether the partitioning of chromosomes is the key event for the decision to divide. We show how key trends in single-cell data reject the classic idea of replication-segregation as the rate-limiting process for cell division. Instead, the data agree with a model where two concurrent processes (setting replication initiation and interdivision time) set cell division on competing time scales. During each cell cycle, division is set by the slowest process (an "AND" gate). The concept of transitions between cell cycle stages as decisional processes integrating multiple inputs instead of cascading from orchestrated steps can affect the way we think of the cell cycle in general.


Asunto(s)
División Celular , Segregación Cromosómica , Cromosomas Bacterianos/genética , Replicación del ADN , ADN Bacteriano/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Ciclo Celular , ADN Bacteriano/genética , Escherichia coli/genética
19.
Cell Rep ; 25(3): 761-771.e4, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332654

RESUMEN

Understanding the classic problem of how single E. coli cells coordinate cell division with genome replication would open the way to addressing cell-cycle progression at the single-cell level. Recent studies produced new data, but the contrast in their conclusions and proposed mechanisms makes the emerging picture fragmented and unclear. Here, we re-evaluate available data and models, including generalizations based on the same assumptions. We show that although they provide useful insights, none of the proposed models captures all correlation patterns observed in data. We conclude that the assumption that replication is the bottleneck process for cell division is too restrictive. Instead, we propose that two concurrent cycles responsible for division and initiation of DNA replication set the time of cell division. This framework allows us to select a nearly constant added size per origin between subsequent initiations as the most likely mechanism setting initiation of replication.


Asunto(s)
División Celular , Cromosomas Bacterianos/genética , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Ciclo Celular , Proteínas de Escherichia coli/genética , Modelos Estadísticos , Análisis de la Célula Individual
20.
Front Microbiol ; 9: 1541, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105006

RESUMEN

In physics, it is customary to represent the fluctuations of a stochastic system at steady state in terms of linear response to small random perturbations. Previous work has shown that the same framework describes effectively the trade-off between cell-to-cell variability and correction in the control of cell division of single E. coli cells. However, previous analyses were motivated by specific models and limited to a subset of the measured variables. For example, most analyses neglected the role of growth rate variability. Here, we take a comprehensive approach and consider several sets of available data from both microcolonies and microfluidic devices in different growth conditions. We evaluate all the coupling coefficients between the three main measured variables (interdivision times, cell sizes and individual-cell growth rates). The linear-response framework correctly predicts consistency relations between a priori independent experimental measurements, which confirms its validity. Additionally, the couplings between the cell-specific growth rate and the other variables are typically non zero. Finally, we use the framework to detect signatures of mechanisms in experimental data involving growth rate fluctuations, finding that (1) noise-generating coupling between size and growth rate is a consequence of inter-generation growth rate correlations and (2) the correlation patterns agree with a near-adder model where the added size has a dependence on the single-cell growth rate. Our findings define relevant constraints that any theoretical description should reproduce, and will help future studies aiming to falsify some of the competing models of the cell cycle existing today in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA