Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 33(2): 284-295, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31556345

RESUMEN

Temperatures from 2 to 8°C transiently induce quantitative resistance to powdery mildew in several host species (cold stress-induced disease resistance [SIDR]). Although cold SIDR events occur in vineyards worldwide an average of 14 to 21 times after budbreak of grapevine and can significantly delay grapevine powdery mildew (Erysiphe necator) epidemics, its molecular basis was poorly understood. We characterized the biology underlying the Vitis vinifera cold SIDR phenotype-which peaks at 24 h post-cold (hpc) treatment and results in a 22 to 28% reduction in spore penetration success-through highly replicated (n = 8 to 10) RNA sequencing experiments. This phenotype was accompanied by a sweeping transcriptional downregulation of photosynthesis-associated pathways whereas starch and sugar metabolism pathways remained largely unaffected, suggesting a transient imbalance in host metabolism and a suboptimal target for pathogen establishment. Twenty-six cold-responsive genes peaked in their differential expression at the 24-hpc time point. Finally, a subset of genes associated with nutrient and amino acid transport accounted for four of the eight most downregulated transcripts, including two nodulin 1A gene precursors, a nodulin MtN21 precursor, and a Dynein light chain 1 motor protein precursor. Reduced transport could exacerbate localized nutrient sinks that would again be transiently suboptimal for pathogen growth. This study links the transient cold SIDR phenotype to underlying transcriptional changes and provides an experimental framework and library of candidate genes to further explore cold SIDR in several systems, with an ultimate goal of identifying novel breeding or management targets for reduced disease.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Vitis , Ascomicetos/fisiología , Respuesta al Choque por Frío/genética , Resistencia a la Enfermedad/genética , Transcriptoma , Vitis/genética , Vitis/microbiología
2.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541839

RESUMEN

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Asunto(s)
Virus Gigantes/genética , Glicoproteínas/genética , Proteoma/análisis , Fagos de Salmonella/genética , Salmonella typhimurium/virología , Proteínas Virales/genética , ADN Viral/genética , Perfilación de la Expresión Génica , Genoma Viral/genética , Espectrometría de Masas , Pseudomonas aeruginosa/virología
3.
Theor Appl Genet ; 131(5): 1173-1189, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29468460

RESUMEN

KEY MESSAGE: Rapid characterization of novel NB-LRR-associated resistance to Phomopsis cane spot on grapevine using high-throughput sampling and low-coverage sequencing for genotyping, locus mapping and transcriptome analysis provides insights into genetic resistance to a hemibiotrophic fungus. Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), reduces the productivity in grapevines. Host resistance was studied on three F1 families derived from crosses involving resistant genotypes 'Horizon', Illinois 547-1, Vitis cinerea B9 and V. vinifera 'Chardonnay'. All families had progeny with extremely susceptible phenotypes, developing lesions on both dormant canes and maturing fruit clusters. Segregation of symptoms was observed under natural levels of inoculum in the field, while phenotypes on green shoots were confirmed under controlled inoculations in greenhouse. High-density genetic maps were used to localize novel qualitative resistance loci named Rda1 and Rda2 from V. cinerea B9 and 'Horizon', respectively. Co-linearity between reference genetic and physical maps allowed localization of Rda2 locus between 1.5 and 2.4 Mbp on chromosome 7, and Rda1 locus between 19.3 and 19.6 Mbp of chromosome 15, which spans a cluster of five NB-LRR genes. Further dissection of this locus was obtained by QTL mapping of gene expression values 14 h after inoculation across a subset of the 'Chardonnay' × V. cinerea B9 progeny. This provided evidence for the association between transcript levels of two of these NB-LRR genes with Rda1, with increased NB-LRR expression among susceptible progeny. In resistant parent V. cinerea B9, inoculation with D. ampelina was characterized by up-regulation of SA-associated genes and down-regulation of ethylene pathways, suggesting an R-gene-mediated response. With dominant effects associated with disease-free berries and minimal symptoms on canes, Rda1 and Rda2 are promising loci for grapevine genetic improvement.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Vitis/genética , Ascomicetos , Mapeo Cromosómico , Sitios Genéticos , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Vitis/microbiología
4.
J Virol ; 90(22): 10284-10298, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27605673

RESUMEN

Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase ß subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" ß' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE: In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.


Asunto(s)
Genes Esenciales/genética , Fagos de Salmonella/genética , Proteínas Virales/genética , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral/genética , Virión/genética
5.
Plants (Basel) ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501292

RESUMEN

The invasive species Lonicera maackii (Amur Honeysuckle) is an increasing problem sweeping from the eastern United States toward the west, impacting normal forest development and animal survival across multiple taxa. Little is known about the genomics of this species, although a related invasive, Lonicera japonica, has been sequenced. Understanding the genomic foundation of the Lonicera maackii species could help us understand the biochemistry and life history that are the underpinnings of invasive success, as well as potential vulnerabilities and strengths which could guide research and development to control its spread. Here we present a draft, but high-quality, short-read whole-genome sequence, assembly, and annotation of Lonicera maackii, demonstrating that inexpensive and rapid short-read technologies can be successfully used in invasive species research. Despite being a short-read assembly, the genome length (7.93 × 108) and completeness (estimated as 90.2-92.1% by BUSCO and Merqury) are close to the previously published chromosome-level sequencing of L. japonica. No bias, by means of a Gene Ontology analysis, was identified among missing BUSCOs. A duplication of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase gene in both Lonicera species is identified, and the potential impact on controlling these invasive species is discussed. Future prospects for a diversity analysis of invasive species is also discussed.

6.
Front Plant Sci ; 12: 657240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936141

RESUMEN

Aligning short-read sequences is the foundational step to most genomic and transcriptomic analyses, but not all tools perform equally, and choosing among the growing body of available tools can be daunting. Here, in order to increase awareness in the research community, we discuss the merits of common algorithms and programs in a way that should be approachable to biologists with limited experience in bioinformatics. We will only in passing consider the effects of data cleanup, a precursor analysis to most alignment tools, and no consideration will be given to downstream processing of the aligned fragments. To compare aligners [Bowtie2, Burrows Wheeler Aligner (BWA), HISAT2, MUMmer4, STAR, and TopHat2], an RNA-seq dataset was used containing data from 48 geographically distinct samples of the grapevine powdery mildew fungus Erysiphe necator. Based on alignment rate and gene coverage, all aligners performed well with the exception of TopHat2, which HISAT2 superseded. BWA perhaps had the best performance in these metrics, except for longer transcripts (>500 bp) for which HISAT2 and STAR performed well. HISAT2 was ~3-fold faster than the next fastest aligner in runtime, which we consider a secondary factor in most alignments. At the end, this direct comparison of commonly used aligners illustrates key considerations when choosing which tool to use for the specific sequencing data and objectives. No single tool meets all needs for every user, and there are many quality aligners available.

7.
Am J Physiol Renal Physiol ; 298(4): F909-22, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20130118

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and affects 1 in 1,000 individuals. Ultrasound is most often used to diagnose ADPKD; such a modality is only useful late in the disease after macroscopic cysts are present. There is accumulating evidence suggesting that there are common cellular and molecular mechanisms responsible for cystogenesis in human and murine PKD regardless of the genes mutated, and, in the case of complex metabolomic analysis, the use of a mouse model has distinct advantages for proof of principle over a human study. Therefore, in this study we utilized a urinary metabolomics-based investigation using gas chromatography-time of flight mass spectrometry to demonstrate that the cystic mouse can be discriminated from its wild-type counterpart by urine analysis alone. At day 26 of life, before there is serological evidence of kidney dysfunction, affected mice are distinguishable by urine metabolomic analysis; this finding persists through 45 days until 64 days, at which time body weight differences confound the results. Using functional score analysis and the KEGG pathway database, we identify several biologically relevant metabolic pathways which are altered very early in this disease, the most highly represented being the purine and galactose metabolism pathways. In addition, we identify several specific candidate biomarkers, including allantoic acid and adenosine, which are augmented in the urine of young cystic mice. These markers and pathway components, once extended to human disease, may prove useful as a noninvasive means of diagnosing cystic kidney diseases and to suggest novel therapeutic approaches. Thus, urine metabolomics has great diagnostic potential for cystic renal disorders and deserves further study.


Asunto(s)
Biomarcadores/orina , Perfilación de la Expresión Génica , Metabolómica , Enfermedades Renales Poliquísticas/orina , Envejecimiento , Animales , Regulación de la Expresión Génica/fisiología , Ratones , Enfermedades Renales Poliquísticas/genética
8.
PLoS One ; 14(3): e0211378, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30917111

RESUMEN

Sour rot is a disease complex produced by an interaction between grape berries and various species of yeast and acetic acid bacteria in the presence of Drosophila fruit flies. While yeast and bacteria are consistently found on healthy grape berries worldwide, we explored whether the composition of these epiphytic communities differed depending on the presence or absence of sour rot symptoms. Using high-throughput sequencing, we characterized the microbiome of sour rot-affected grapes from two geographical areas across two years. In 2015 and 2016, both healthy and sour rot-affected berries were collected from commercial and research vineyards in Geneva, NY and commercial vineyards in Tasmania, AUS. In this experiment, all associated organisms grouped together primarily by location, and not by presence/absence of symptoms or cultivar. The predominant difference between asymptomatic and symptomatic samples, regardless of location, was the abundance of Acetobacter species, which were significantly more plentiful in the symptomatic samples. Yeast genera such as Candida, Hanseniaspora, Pichia and Saccharomyces were abundant in both sets of samples, but varied by region. The consistent presence of yeast species and the increased abundance of acetic acid-generating bacteria is consistent with our understanding of their etiological role in sour rot development. In 2016, diseased grapes also were collected from vineyards in Fredonia, NY, and Modesto, CA. Consistent with our comparison study, all associated organisms again grouped together primarily by location. Yeast genera such as Candida, Hanseniaspora, Pichia and Saccharomyces were abundant in both sets of samples, but varied by region. The consistent presence of yeast species and the abundance of acetic acid-generating bacteria in both experiments is consistent with our understanding of their etiological role in sour rot development.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Ácido Acético , Acetobacter/patogenicidad , Fermentación , Frutas/microbiología , Microbiota/fisiología , Enfermedades de las Plantas/etiología , Vino/microbiología , Levaduras/patogenicidad
9.
Front Microbiol ; 8: 2251, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187846

RESUMEN

Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection. In this study, we characterized the SPN3US virion using mass spectrometry to gain insight into its head composition and the features that its head shares with those of related giant phages and with T4 phage. SPN3US has only homologs to the T4 proteins critical for prohead shell formation, the portal and major capsid proteins, as well as to the major enzymes essential for head maturation, the prohead protease and large terminase subunit. Eight of ~50 SPN3US head proteins were found to undergo proteolytic processing at a cleavage motif by the prohead protease gp245. Gp245 undergoes auto-cleavage of its C-terminus, suggesting this is a conserved activation and/or maturation feature of related phage proteases. Analyses of essential head gene mutants showed that the five subunits of the vRNAP must be assembled for any subunit to be incorporated into the prohead, although the assembled vRNAP must then undergo subsequent major conformational rearrangements in the DNA packed capsid to allow ejection through the ~30 Å diameter tail tube for transcription from the injected DNA. In addition, ejection protein candidate gp243 was found to play a critical role in head assembly. Our analyses of the vRNAP and gp243 mutants highlighted an unexpected dichotomy in giant phage head maturation: while all analyzed giant phages have a homologous protease that processes major capsid and portal proteins, processing of ejection proteins is not always a stable/defining feature. Our identification in SPN3US, and related phages, of a diverged paralog to the prohead protease further hints toward a complicated evolutionary pathway for giant phage head structure and assembly.

10.
J Am Med Inform Assoc ; 12(1): 90-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15492032

RESUMEN

The rapid advances in high-throughput biotechnologies such as DNA microarrays and mass spectrometry have generated vast amounts of data ranging from gene expression to proteomics data. The large size and complexity involved in analyzing such data demand a significant amount of computing power. High-performance computation (HPC) is an attractive and increasingly affordable approach to help meet this challenge. There is a spectrum of techniques that can be used to achieve computational speedup with varying degrees of impact in terms of how drastic a change is required to allow the software to run on an HPC platform. This paper describes a high- productivity/low-maintenance (HP/LM) approach to HPC that is based on establishing a collaborative relationship between the bioinformaticist and HPC expert that respects the former's codes and minimizes the latter's efforts. The goal of this approach is to make it easy for bioinformatics researchers to continue to make iterative refinements to their programs, while still being able to take advantage of HPC. The paper describes our experience applying these HP/LM techniques in four bioinformatics case studies: (1) genome-wide sequence comparison using Blast, (2) identification of biomarkers based on statistical analysis of large mass spectrometry data sets, (3) complex genetic analysis involving ordinal phenotypes, (4) large-scale assessment of the effect of possible errors in analyzing microarray data. The case studies illustrate how the HP/LM approach can be applied to a range of representative bioinformatics applications and how the approach can lead to significant speedup of computationally intensive bioinformatics applications, while making only modest modifications to the programs themselves.


Asunto(s)
Biología Computacional , Metodologías Computacionales , Secuencia de Aminoácidos , Espectrometría de Masas , Análisis por Micromatrices , Fenotipo , Análisis de Secuencia
11.
BMC Bioinformatics ; 5: 124, 2004 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-15350198

RESUMEN

BACKGROUND: The development of software tools that analyze microarray data in the context of genetic knowledgebases is being pursued by multiple research groups using different methods. A common problem for many of these tools is how to correct for multiple statistical testing since simple corrections are overly conservative and more sophisticated corrections are currently impractical. A careful study of the nature of the distribution one would expect by chance, such as by a simulation study, may be able to guide the development of an appropriate correction that is not overly time consuming computationally. RESULTS: We present the results from a preliminary study of the distribution one would expect for analyzing sets of genes extracted from Drosophila, S. cerevisiae, Wormbase, and Gramene databases using the Gene Ontology Database. CONCLUSIONS: We found that the estimated distribution is not regular and is not predictable outside of a particular set of genes. Permutation-based simulations may be necessary to determine the confidence in results of such analyses.


Asunto(s)
Bases de Datos Genéticas/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Animales , Biología Computacional/estadística & datos numéricos , Interpretación Estadística de Datos , Drosophila/genética , Helmintos/genética , Saccharomyces cerevisiae/genética , Programas Informáticos/estadística & datos numéricos
12.
Artículo en Inglés | MEDLINE | ID: mdl-28912930
13.
Cancer Res ; 72(14): 3471-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22628425

RESUMEN

Metabolomics is increasingly being used in cancer biology for biomarker discovery and identification of potential novel therapeutic targets. However, a systematic metabolomics study of multiple biofluids to determine their interrelationships and to describe their use as tumor proxies is lacking. Using a mouse xenograft model of kidney cancer, characterized by subcapsular implantation of Caki-1 clear cell human kidney cancer cells, we examined tissue, serum, and urine all obtained simultaneously at baseline (urine) and at, or close to, animal sacrifice (urine, tissue, and plasma). Uniform metabolomics analysis of all three "matrices" was accomplished using gas chromatography- and liquid chromatography-mass spectrometry. Of all the metabolites identified (267 in tissue, 246 in serum, and 267 in urine), 89 were detected in all 3 matrices, and the majority was altered in the same direction. Heat maps of individual metabolites showed that alterations in serum were more closely related to tissue than was urine. Two metabolites, cinnamoylglycine and nicotinamide, were concordantly and significantly (when corrected for multiple testing) altered in tissue and serum, and cysteine-glutathione disulfide showed the highest change (232.4-fold in tissue) of any metabolite. On the basis of these and other considerations, three pathways were chosen for biologic validation of the metabolomic data, resulting in potential therapeutic target identification. These data show that serum metabolomics analysis is a more accurate proxy for tissue changes than urine and that tryptophan degradation (yielding anti-inflammatory metabolites) is highly represented in renal cell carcinoma, and support the concept that PPAR-α antagonism may be a potential therapeutic approach for this disease.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Metabolómica/métodos , Animales , Línea Celular Tumoral , Proliferación Celular , Cromatografía Liquida , Humanos , Espectrometría de Masas , Ratones , Ratones Desnudos , PPAR alfa/farmacología , Trasplante Heterólogo , Triptófano/metabolismo , Escape del Tumor , Estudios de Validación como Asunto
14.
OMICS ; 15(5): 293-303, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21348635

RESUMEN

Kidney cancer is the seventh most common cancer in the Western world, its incidence is increasing, and it is frequently metastatic at presentation, at which stage patient survival statistics are grim. In addition, there are no useful biofluid markers for this disease, such that diagnosis is dependent on imaging techniques that are not generally used for screening. In the present study, we use metabolomics techniques to identify metabolites in kidney cancer patients' urine, which appear at different levels (when normalized to account for urine volume and concentration) from the same metabolites in nonkidney cancer patients. We found that quinolinate, 4-hydroxybenzoate, and gentisate are differentially expressed at a false discovery rate of 0.26, and these metabolites are involved in common pathways of specific amino acid and energetic metabolism, consistent with high tumor protein breakdown and utilization, and the Warburg effect. When added to four different (three kidney cancer-derived and one "normal") cell lines, several of the significantly altered metabolites, quinolinate, α-ketoglutarate, and gentisate, showed increased or unchanged cell proliferation that was cell line-dependent. Further evaluation of the global metabolomics analysis, as well as confirmation of the specific potential biomarkers using a larger sample size, will lead to new avenues of kidney cancer diagnosis and therapy.


Asunto(s)
Biomarcadores de Tumor/orina , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/orina , Neoplasias Renales/patología , Neoplasias Renales/orina , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Renales/metabolismo , Redes y Vías Metabólicas , Metabolómica , Reproducibilidad de los Resultados
15.
J Appl Physiol (1985) ; 110(3): 746-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21109598

RESUMEN

Genes influencing resting energy expenditure (REE) and respiratory quotient (RQ) represent candidate genes for obesity and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. We aim to explore the molecular basis for individual variation in REE and fuel partitioning as reflected by RQ. We performed microarray studies in human vastus lateralis muscle biopsies from 40 healthy subjects with measured REE and RQ values. We identified 2,392 and 1,115 genes significantly correlated with REE and RQ, respectively. Genes correlated with REE and RQ encompass a broad array of functions, including carbohydrate and lipid metabolism, gene expression, mitochondrial processes, and membrane transport. Microarray pathway analysis revealed that REE was positively correlated with upregulation of G protein-coupled receptor signaling (meet criteria/total genes: 65 of 283) involved in autonomic nervous system functions, including those receptors mediating adrenergic, dopamine, γ-aminobutyric acid (GABA), neuropeptide Y (NPY), and serotonin action (meet criteria/total genes: 46 of 176). Reduced REE was associated with an increase in genes participating in ubiquitin-proteasome-dependent proteolytic pathways (58 of 232). Serine-type peptidase activity (9 of 76) was positively correlated with RQ, while genes involved in the protein phosphatase type 2A complex (4 of 9), mitochondrial function and cellular respiration (38 of 315), and unfolded protein binding (19 of 97) were associated with reduced RQ values and a preference for lipid fuel metabolism. Individual variations in whole body REE and RQ are regulated by differential expressions of specific genes and pathways intrinsic to skeletal muscle.


Asunto(s)
Metabolismo Energético/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Descanso/fisiología , Transducción de Señal/fisiología , Adulto , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Masculino
17.
Ann Hum Biol ; 34(6): 607-19, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17952709

RESUMEN

BACKGROUND: Aldehyde dehydrogenase-2 (ALDH2) degrades acetaldehyde metabolized from ethanol. Its encoding gene ALDH2 has a functional polymorphism, ALDH2 Glu487Lys associated with low enzyme activity. AIM: Since Glu487Lys of this locus is fixed for the functional subunit in all non-East Asian populations, this polymorphism was examined along with G-357A promoter (SacI) and four other intronic loci to identify informative markers to study the role of this gene in Indian populations. SUBJECTS AND METHODS: A total of 397 males belonging to six ethnic populations, from four linguistic groups of India were included in the present study. No test was performed to detect the phenotype of alcoholism. Genotype of ALDH2*E487K and G-357A promoter site along with four non-coding single nucleotide polymorphisms (SNPs) in the upstream of this polymorphism were determined by PCR and sequencing. RESULTS: All of the subjects were found to have the common homozygous genotype (ALDH2*1/ALDH2*1) for the E487K site. Allele frequencies of non-coding SNPs varied among populations but genetic variance (F(st)) indicated little variation among populations. Four major SNP-defined haplotypes accounted for almost all chromosomes in all populations. The ancestral haplotype was found in high frequency in all populations and linkage disequilibrium was strong and highly significant between all sites (p < 0.05). CONCLUSION: The small number of haplotypes in this region is suggesting the strong linkage disequilibrium across the region and confirms the global long-range linkage disequilibrium around the ALDH2 locus. This study provides a baseline for future research into the role of the ALDH2 locus in alcoholism in Indian populations.


Asunto(s)
Alcoholismo/genética , Aldehído Deshidrogenasa/genética , Alelos , Genética de Población , Polimorfismo de Nucleótido Simple , Aldehído Deshidrogenasa Mitocondrial , Genotipo , Humanos , India , Desequilibrio de Ligamiento/genética , Masculino
18.
Am J Hum Genet ; 80(3): 441-56, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17273965

RESUMEN

The alcohol dehydrogenase (ADH) family of enzymes catalyzes the reversible oxidation of alcohol to acetaldehyde. Seven ADH genes exist in a segment of ~370 kb on 4q21. Products of the three class I ADH genes that share 95% sequence identity are believed to play the major role in the first step of ethanol metabolism. Because the common belief that selection has operated at the ADH1B*47His allele in East Asian populations lacks direct biological or statistical evidence, we used genomic data to test the hypothesis. Data consisted of 54 single-nucleotide polymorphisms (SNPs) across the ADH clusters in a global sampling of 42 populations. Both the F(st) statistic and the long-range haplotype (LRH) test provided positive evidence of selection in several East Asian populations. The ADH1B Arg47His functional polymorphism has the highest F(st) of the 54 SNPs in the ADH cluster, and it is significantly above the mean F(st) of 382 presumably neutral sites tested on the same 42 population samples. The LRH test that uses cores including that site and extending on both sides also gives significant evidence of positive selection in some East Asian populations for a specific haplotype carrying the ADH1B*47His allele. Interestingly, this haplotype is present at a high frequency in only some East Asian populations, whereas the specific allele also exists in other East Asian populations and in the Near East and Europe but does not show evidence of selection with use of the LRH test. Although the ADH1B*47His allele conveys a well-confirmed protection against alcoholism, that modern phenotypic manifestation does not easily translate into a positive selective force, and the nature of that selective force, in the past and/or currently, remains speculative.


Asunto(s)
Alcohol Deshidrogenasa/genética , Genética de Población , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Análisis por Conglomerados , Etanol/metabolismo , Frecuencia de los Genes , Genotipo , Geografía , Desequilibrio de Ligamiento , Familia de Multigenes/genética , Filogenia
19.
Endocrine ; 31(1): 5-17, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17709892

RESUMEN

To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hiperinsulinismo/metabolismo , Insulina/fisiología , Músculo Esquelético/metabolismo , Adulto , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Femenino , Perfilación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/metabolismo , Receptores de Esteroides/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
20.
Alcohol Clin Exp Res ; 29(12): 2091-100, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16385178

RESUMEN

BACKGROUND: Of the seven known human alcohol dehydrogenase (ADH) genes, the non-liver expressed ADH7 gene codes for the enzyme with the highest maximal activity for ethanol. Previous study from our laboratory has suggested that ADH7 has an epistatic role for protection against alcoholism based on a single ADH7 SNP. METHODS: We have now studied seven SNPs, additional populations for the SNP previously examined, and six more new SNPs, across 23 kb of ADH7 in 38 population samples originating from different geographical regions of the world. RESULTS: The overall linkage disequilibrium is moderate to strong across this region even though considerable 7-SNP haplotype diversity is observed. This uncommonly high haplotype diversity is explained by high LD within each "half," the three upstream SNPs and the four downstream SNPs, but near randomization between the "halves." This division significantly simplified the haplotype pattern: only four major haplotypes account for almost all chromosomes in all populations in each "half." CONCLUSIONS: The low linkage disequilibrium between these two "halves" suggests multiple recombination(s) have occurred in this region, specifically, within intron 7. The absence of strong LD between the functional variation in ADH1B that is strongly associated with alcoholism and any of the variation in ADH7 supports the genetic independence of ADH7 in association studies. Thus, the previously observed epistatic effect of ADH7 cannot be explained by its linkage disequilibrium with a causative factor in ADH1B.


Asunto(s)
Alcohol Deshidrogenasa/genética , Alcoholismo/enzimología , Alcoholismo/genética , Alcoholismo/epidemiología , Alelos , ADN/genética , Etnicidad , Frecuencia de los Genes , Genotipo , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA